论文标题
甲骨文的深度开放式检测表示形式分析
Oracle Analysis of Representations for Deep Open Set Detection
论文作者
论文摘要
在运行时检测新课程的问题被称为公开检测,对于在深度学习的背景下进行的各种现实应用程序,例如医疗应用,自主驾驶等。开放式固定检测至关重要,涉及解决两个问题:(i)必须将输入图像映射到潜在表示中,该图像包含足够的信息来识别该信息,以确定该信息的信息,以识别该信息,以识别该信息的信息,以识别该信息的信息。深度异常检测方法的研究进展缓慢。原因之一可能是大多数论文同时引入了新的表示学习技术和新的异常评分方法。这项工作的目的是通过提供分别衡量表示形式学习和异常评分的有效性的方法来改善这种方法。这项工作做出了两项方法论贡献。首先是引入甲骨文异常检测的概念,以量化学习潜在表示中可用的信息。第二个是引入Oracle表示学习,该学习产生的表示形式可以保证足以进行准确的异常检测。这两种技术可帮助研究人员将学习表示的质量与异常评分机制的性能分开,以便他们可以调试和改善系统。这些方法还为通过更好的异常评分机制改善了多少开放类别检测提供了上限。两个牙齿的组合给出了任何开放类别检测方法可以实现的性能的上限。这项工作介绍了这两种Oracle技术,并通过将它们应用于几种领先的开放类别检测方法来演示其实用性。
The problem of detecting a novel class at run time is known as Open Set Detection & is important for various real-world applications like medical application, autonomous driving, etc. Open Set Detection within context of deep learning involves solving two problems: (i) Must map the input images into a latent representation that contains enough information to detect the outliers, and (ii) Must learn an anomaly scoring function that can extract this information from the latent representation to identify the anomalies. Research in deep anomaly detection methods has progressed slowly. One reason may be that most papers simultaneously introduce new representation learning techniques and new anomaly scoring approaches. The goal of this work is to improve this methodology by providing ways of separately measuring the effectiveness of the representation learning and anomaly scoring. This work makes two methodological contributions. The first is to introduce the notion of Oracle anomaly detection for quantifying the information available in a learned latent representation. The second is to introduce Oracle representation learning, which produces a representation that is guaranteed to be sufficient for accurate anomaly detection. These two techniques help researchers to separate the quality of the learned representation from the performance of the anomaly scoring mechanism so that they can debug and improve their systems. The methods also provide an upper limit on how much open category detection can be improved through better anomaly scoring mechanisms. The combination of the two oracles gives an upper limit on the performance that any open category detection method could achieve. This work introduces these two oracle techniques and demonstrates their utility by applying them to several leading open category detection methods.