论文标题
使用脆弱的感知来认证稳健的控制器
Learning Certifiably Robust Controllers Using Fragile Perception
论文作者
论文摘要
计算机视觉和机器学习的进步使机器人能够以强大的新方式感知周围的环境,但是这些感知模块具有众所周知的脆弱性。我们考虑了合成尽管有知觉错误的安全控制器的问题。所提出的方法基于具有输入依赖性噪声的高斯过程构建状态估计器。该估计器计算给定状态的实际状态的高信心集。然后,合成了可证明可以处理状态不确定性的强大神经网络控制器。此外,提出了一种自适应采样算法来共同改善估计器和控制器。仿真实验,包括Carla中基于现实的视觉的泳道示例,说明了提出的方法在与基于深度学习的感知合成稳健控制器方面提出的方法的希望。
Advances in computer vision and machine learning enable robots to perceive their surroundings in powerful new ways, but these perception modules have well-known fragilities. We consider the problem of synthesizing a safe controller that is robust despite perception errors. The proposed method constructs a state estimator based on Gaussian processes with input-dependent noises. This estimator computes a high-confidence set for the actual state given a perceived state. Then, a robust neural network controller is synthesized that can provably handle the state uncertainty. Furthermore, an adaptive sampling algorithm is proposed to jointly improve the estimator and controller. Simulation experiments, including a realistic vision-based lane-keeping example in CARLA, illustrate the promise of the proposed approach in synthesizing robust controllers with deep-learning-based perception.