论文标题
Kähler表面的C-Proxtive对称代数
The c-projective symmetry algebras of Kähler surfaces
论文作者
论文摘要
让$ m $是带有复杂结构$ j $和kähler公制$ g $的kähler歧管。 c-projective矢量场是$ m $上的矢量场,其流量将$ j $ - 平面曲线发送到$ j $ -planar曲线,其中$ j $ -planar曲线是对伪 - 利马尼亚式(无复杂结构)(无复杂的结构)的(未侵略)地球的类似物。计算了Kähler表面的C-projective对称代数,其表面具有必需(即非属性)c-projementive矢量场。
Let $M$ be a Kähler manifold with complex structure $J$ and Kähler metric $g$. A c-projective vector field is a vector field on $M$ whose flow sends $J$-planar curves to $J$-planar curves, where $J$-planar curves are analogs of what (unparametrised) geodesics are for pseudo-Riemannian manifolds (without complex structure). The c-projective symmetry algebras of Kähler surfaces with essential (i.e., non-affine) c-projective vector fields are computed.