论文标题
当循环长度短于数据观察间隔时,不可设定的马尔可夫链的最大似然估计
Maximum likelihood estimation for nonembeddable Markov chains when the cycle length is shorter than the data observation interval
论文作者
论文摘要
在成本效益和最佳决策研究中,时间均匀的马尔可夫连锁店通常用作疾病进展模型。当在时间间隔内收集数据比模型的过渡周期长度时,这些模型的最大似然估计可能会具有挑战性。例如,可能有必要从每年收集的数据中估算每月的过渡模型。带有过渡矩阵$ \ Mathbf {p} $的暂时性马尔可夫链的可能性和以$ t $循环的间隔观察到的数据是$ \ mathbf {p}^t。$的最大似然估计的$ \ mathbf {p}^t $的最大似然估计。然后,此估算的$ t $ th根将是$ \ mathbf {p}的最大似然估计。但是,$ \ mathbf {p}^t $的$ t $ th root不一定是有效的过渡矩阵。当不可用的有效根本不可用时,$ \ mathbf {p} $的最大似然估计是一个受约束的优化问题。优化问题不是凸。通过网格搜索的图形表示,在几个案例研究中探索了局部收敛。示例案例使用疾病进展数据以及合成数据。随着周期数量或状态数量的增加,全球最大似然估计越来越难以定位。即使对于相对简单的模型,似乎直接的估计问题也可能具有挑战性。研究人员应考虑可能最大化或替代模型的替代方法。
Time-homogeneous Markov chains are often used as disease progression models in studies of cost-effectiveness and optimal decision-making. Maximum likelihood estimation of these models can be challenging when data are collected at a time interval longer than the model's transition cycle length. For example, it may be necessary to estimate a monthly transition model from data collected annually. The likelihood for a time-homogeneous Markov chain with transition matrix $\mathbf{P}$ and data observed at intervals of $T$ cycles is a function of $\mathbf{P}^T.$ The maximum likelihood estimate of $\mathbf{P}^T$ is easily obtained from the data. The $T$th root of this estimate would then be a maximum likelihood estimate for $\mathbf{P}.$ However, the $T$th root of $\mathbf{P}^T$ is not necessarily a valid transition matrix. Maximum likelihood estimation of $\mathbf{P}$ is a constrained optimization problem when a valid root is unavailable. The optimization problem is not convex. Local convergence is explored in several case studies through graphical representations of a grid search. The example cases use disease progression data from the literature as well as synthetic data. The global maximum likelihood estimate is increasingly difficult to locate as the number of cycles or the number of states increases. What seems like a straightforward estimation problem can be challenging even for relatively simple models. Researchers should consider alternatives to likelihood maximization or alternative models.