论文标题

分解范围和稳定的遗传类别的表征

Decomposition horizons and a characterization of stable hereditary classes of graphs

论文作者

Braunfeld, Samuel, Nešetřil, Jaroslav, de Mendez, Patrice Ossona, Siebertz, Sebastian

论文摘要

具有有界深度基础类别的有限大小和准大小分解的概念是两名作者在几年前引入的图形稀疏性结构理论的核心,并提供了两个类别具有有限膨胀和无处密集类别的类别的表征。该理论与模型理论的紧密联系导致考虑了一阶转导,它们是逻辑上定义的图形转换,并启动了图形类别组合和模型理论特性的比较研究,并强调了依赖(或NIP)和稳定性的模型理论概念和稳定性。在本文中,我们首先证明了每个具有依赖(分别\ stable)基类别的准尺寸分解的遗传阶层本身都是依赖的(resp。\ stable)。在对``分解范围'''的更一般研究中获得了该结果,该研究是与准大小分解兼容的类属性。我们推断出,具有准尺寸分解的遗传性班级具有有限的灌木基础类是稳定的。在本文的第二部分中,我们证明了相反的内容。因此,我们将稳定的遗传阶层描述为那些遗传阶级,这些阶层接受了具有有界的什拉布基本类别的准尺寸分解。通过证明每一个遗传稳定的图形几乎没有任何地方的准准灌注表示,从而积极回答了Dreier等人的猜想,从而获得了这一结果。这些结果有几个后果。例如,我们表明,每个图$ g $ in Stable,遗传级别的图$ \ Mathscr c $都有一个集团或稳定的尺寸$ω_ {\ Mathscr c,ε}(| g |^{1/2--})$,对于每一个$ε> 0 $,它都无法改善,这是一个紧密的方法。 c}(| g |^{1/2})$。

The notions of bounded-size and quasibounded-size decompositions with bounded treedepth base classes are central to the structural theory of graph sparsity introduced by two of the authors years ago, and provide a characterization of both classes with bounded expansions and nowhere dense classes. Strong connections of this theory with model theory led to considering first-order transductions, which are logically defined graph transformations, and to initiate a comparative study of combinatorial and model theoretical properties of graph classes, with an emphasis on the model theoretical notions of dependence (or NIP) and stability. In this paper, we first prove that every hereditary class with quasibounded-size decompositions with dependent (resp.\ stable) base classes is itself dependent (resp.\ stable). This result is obtained in a more general study of ``decomposition horizons'', which are class properties compatible with quasibounded-size decompositions. We deduce that hereditary classes with quasibounded-size decompositions with bounded shrubdepth base classes are stable. In the second part of the paper, we prove the converse. Thus, we characterize stable hereditary classes of graphs as those hereditary classes that admit quasibounded-size decompositions with bounded shrubdepth base classes. This result is obtained by proving that every hereditary stable class of graphs admits almost nowhere dense quasi-bush representations, thus answering positively a conjecture of Dreier et al. These results have several consequences. For example, we show that every graph $G$ in a stable, hereditary class of graphs $\mathscr C$ has a clique or a stable set of size $Ω_{\mathscr C,ε}(|G|^{1/2-ε})$, for every $ε>0$, which is tight in the sense that it cannot be improved to $Ω_{\mathscr C}(|G|^{1/2})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源