论文标题

高能光电子在地球电离层中分子氮解离的作用

The Role of High Energy Photoelectrons on the Dissociation of Molecular Nitrogen in Earth's Ionosphere

论文作者

Samaddar, Srimoyee, Venkataramani, Karthik, Yonker, Justin, Bailey, Scott. M.

论文摘要

来自太阳的软X射线辐射负责在电离层的D和E区域中产生高能光电子,它们沉积了大部分电离能量。该过程创建的光电子是在200公里以下的氮分子($ n_2 $)解离的主要驱动因素。 N2的解离是一氧化氮(NO)产生的主要机制之一,这是这些高度的重要次要组成部分。为了估计N2的解离速率,我们需要其解离截面。光电子通过光电子的分离横截面主要是使用其激发态的横截面估计的,使用前共聚因子和解离性电离通道。缺乏横截面数据,尤其是在高电子能量和$ n_2 $和$ n_2^+$的较高激发状态下,引入了分离率计算的不确定性,随后导致了来自该来源的无生产率的不确定性。在这项工作中,我们已安装了更新的电子冲击横截面数据,并应用了获得的预分离因子,由于高能量光电子而导致的N2的解离速率更新。将N2的新解离速率与所罗门和Qian [2005]获得的解离率进行了比较。新的解离截面和速率估计比所罗门和Qian [2005]模型低约30%。观察到使用大气化学和能量学(ACE1D)模型中更新的解离速率的参数化版本导致高度低于100 km的无密度的$ 20%$增加。

Soft x-ray radiation from the sun is responsible for the production of high energy photoelectrons in the D and E regions of the ionosphere, where they deposit most of their ionization energy. The photoelectrons created by this process are the main drivers for dissociation of Nitrogen molecule ($N_2$) below 200 km. The dissociation of N2 is one of main mechanisms of the production of Nitric Oxide (NO), an important minor constituent at these altitudes. In order to estimate the dissociation rate of N2 we need its dissociation cross-sections. The dissociation cross-sections for N2 by photoelectrons are primarily estimated from the cross-sections of its excitation states using predissociation factors and dissociative ionization channels. The lack of cross-sections data, particularly at high electron energies and of higher excited states of $N_2$ and $N_2^+$, introduces uncertainty in the dissociation rate calculation, which subsequently leads to uncertainties in the NO production rate from this source. In this work, we have fitted updated electron impact cross-sections data and by applying predissociation factors obtained, updated dissociation rates of N2 due to high energy photoelectrons. The new dissociation rates of N2 are compared to the dissociation rates obtained from Solomon and Qian [2005]. The new dissociation cross-sections and rates are estimated to be about 30% lower than the Solomon and Qian [2005] model. Simulations using a parameterized version of the updated dissociation rates in the Atmospheric Chemistry and Energetics (ACE1D) model leads to a $20%$ increase in NO density at the altitudes below 100 km is observed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源