论文标题
部分可观测时空混沌系统的无模型预测
Universal updates of Dyck-nest signatures
论文作者
论文摘要
令$ 0 <k \ in \ mathbb {z} $。锚定的Dyck长度$ n = 2k+1 $(通过将0位添加到每个长度为$ 2k $的dyck单词中获得,并用于重新诠释汉密尔顿在奇数图中循环$ o_k $和中间级别的图形$ moutze $mützeet al。 $ 2N $ - )2因子及其周期性(分别,二面体)顶点类别,相当于Dyck-Nest Signatures。通过根据有限生长字符串树(RGS)的深度阶段更新这些特征来获得序列,从而通过折叠到单个更新耗时的$ i $ $ i $ nested castling来减少Dyck单词的RGS生成,该castling用于到达每个非Root dyck dyck dyck dyck或dyck sest。此更新是通用的,因为它不取决于$ k $。
Let $0<k\in\mathbb{Z}$. The anchored Dyck words of length $n=2k+1$ (obtained by prefixing a 0-bit to each Dyck word of length $2k$ and used to reinterpret the Hamilton cycles in the odd graph $O_k$ and the middle-levels graph $M_k$ found by Mütze et al.) represent in $O_k$ (resp., $M_k$) the cycles of an $n$- (resp., $2n$-) 2-factor and its cyclic (resp., dihedral) vertex classes, and are equivalent to Dyck-nest signatures. A sequence is obtained by updating these signatures according to the depth-first order of a tree of restricted growth strings (RGS's), reducing the RGS-generation of Dyck words by collapsing to a single update the time-consuming $i$-nested castling used to reach each non-root Dyck word or Dyck nest. This update is universal, for it does not depend on $k$.