论文标题
3D非现行采样轨迹的随机优化(Snopy)
Stochastic Optimization of 3D Non-Cartesian Sampling Trajectory (SNOPY)
论文作者
论文摘要
优化3D K空间采样轨迹以进行有效的MRI既重要又具有挑战性。这项工作提出了一个通用框架,用于通过数据驱动的优化优化3D非 - 牙龈采样模式。我们构建了一个可区分的MRI系统模型,以启用基于梯度的方法进行采样轨迹优化。通过结合训练损失,该算法可以同时优化采样模式的多种特性,包括图像质量,硬件约束(最大振荡速率和梯度强度),减少的外围神经刺激(PNS)和参数降低了对比。所提出的方法可以优化梯度波形(基于样条的自由式优化),也可以优化给定采样轨迹的属性(例如径向轨迹的旋转角度)。值得注意的是,该方法通过基于模型或基于学习的重建方法协同优化采样轨迹。我们提出了几种策略,以减轻高维优化提出的严重非跨性别性和巨大的计算需求。相应的代码被组织为开源,易于使用的工具箱。我们将优化的轨迹应用于包括结构和功能成像在内的多个应用。在仿真研究中,通过优化潮汐优化,3D Kooshball轨迹的重建PSNR增加了4 dB。在前瞻性研究中,与最佳的经验方法相比,通过优化堆栈明星(SOS)轨迹的旋转角度,将PSNR提高了1.4dB。优化旋转EPI轨迹的梯度波形改进了PNS效应的受试者的额定值,从“强”到“轻度”。简而言之,Snopy提供了一种有效的基于数据驱动和优化的方法来量身定制非贸易采样轨迹。
Optimizing 3D k-space sampling trajectories for efficient MRI is important yet challenging. This work proposes a generalized framework for optimizing 3D non-Cartesian sampling patterns via data-driven optimization. We built a differentiable MRI system model to enable gradient-based methods for sampling trajectory optimization. By combining training losses, the algorithm can simultaneously optimize multiple properties of sampling patterns, including image quality, hardware constraints (maximum slew rate and gradient strength), reduced peripheral nerve stimulation (PNS), and parameter-weighted contrast. The proposed method can either optimize the gradient waveform (spline-based freeform optimization) or optimize properties of given sampling trajectories (such as the rotation angle of radial trajectories). Notably, the method optimizes sampling trajectories synergistically with either model-based or learning-based reconstruction methods. We proposed several strategies to alleviate the severe non-convexity and huge computation demand posed by the high-dimensional optimization. The corresponding code is organized as an open-source, easy-to-use toolbox. We applied the optimized trajectory to multiple applications including structural and functional imaging. In the simulation studies, the reconstruction PSNR of a 3D kooshball trajectory was increased by 4 dB with SNOPY optimization. In the prospective studies, by optimizing the rotation angles of a stack-of-stars (SOS) trajectory, SNOPY improved the PSNR by 1.4dB compared to the best empirical method. Optimizing the gradient waveform of a rotational EPI trajectory improved subjects' rating of the PNS effect from 'strong' to 'mild.' In short, SNOPY provides an efficient data-driven and optimization-based method to tailor non-Cartesian sampling trajectories.