论文标题

避免在生物医学信号中基于事件的检测进行后处理

Avoiding Post-Processing with Event-Based Detection in Biomedical Signals

论文作者

Seeuws, Nick, De Vos, Maarten, Bertrand, Alexander

论文摘要

目的:寻找感兴趣的事件是生物医学信号处理中的一项常见任务。癫痫发作和信号伪像的检测是两个关键例子。基于时期的分类是典型的机器学习框架,用于检测此类信号事件,因为经典机器学习技术的直接应用。通常,需要后处理才能实现良好的性能和执行时间依赖性。设计正确的后处理方案将这些分类输出转换为事件是该框架的繁琐且富有劳动力的元素。方法:我们提出了一个基于事件的建模框架,该框架直接与事件作为学习目标,从临时的后处理方案中退出,以将模型输出变成事件。我们说明了该框架在模拟数据和现实世界数据上的实用性,并将其与基于时期的建模方法进行了比较。结果:我们表明,基于事件的建模(无需后处理)与具有广泛后处理的基于时期的建模相比或更好。结论:这些结果表明,将事件视为直接学习目标的力量,而不是使用临时的后处理来获得它们,从而严重减少了设计工作。意义:基于事件的建模框架可以轻松地应用于信号处理中的其他事件检测问题,从而消除了对特定于任务的强化后处理的需求。

Objective: Finding events of interest is a common task in biomedical signal processing. The detection of epileptic seizures and signal artefacts are two key examples. Epoch-based classification is the typical machine learning framework to detect such signal events because of the straightforward application of classical machine learning techniques. Usually, post-processing is required to achieve good performance and enforce temporal dependencies. Designing the right post-processing scheme to convert these classification outputs into events is a tedious, and labor-intensive element of this framework. Methods: We propose an event-based modeling framework that directly works with events as learning targets, stepping away from ad-hoc post-processing schemes to turn model outputs into events. We illustrate the practical power of this framework on simulated data and real-world data, comparing it to epoch-based modeling approaches. Results: We show that event-based modeling (without post-processing) performs on par with or better than epoch-based modeling with extensive post-processing. Conclusion: These results show the power of treating events as direct learning targets, instead of using ad-hoc post-processing to obtain them, severely reducing design effort. Significance: The event-based modeling framework can easily be applied to other event detection problems in signal processing, removing the need for intensive task-specific post-processing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源