论文标题

高斯过程流体力学

Gaussian Process Hydrodynamics

论文作者

Owhadi, Houman

论文摘要

我们提出了一种高斯工艺方法(GP)方法(高斯过程流体动力学,GPH),用于近似于欧拉和纳维尔 - 斯托克斯方程的溶液。与平滑的粒子流体动力学(SPH)一样,GPH是一种基于拉格朗日粒子的方法,涉及跟踪流量运输的有限数量的颗粒。但是,这些粒子不代表物质的易变粒子,而是传递有关连续流的离散/部分信息。闭合是通过将无差异GP的先验$ξ$放在粒子位置的涡度上的条件来实现。已知的物理学(例如Richardson Cascade和速度 - 燃料量定律)通过物理知识的添加剂纳入了GP。这种方法使我们能够以统计方式而不是确定性的方式粗粒湍流。通过选择核的可压缩性和流体/结构边界条件,GPH所需的颗粒比SPH少得多。由于GPH具有自然的概率解释,因此数值结果具有不确定性估计,使其能够将其掺入UQ管道中,并以适应的方式添加/去除粒子(信息量子)。所提出的方法可以接受分析,它继承了对密集核矩阵的最先进求解器的复杂性,并导致自然的湍流定义作为信息丢失。数值实验支持选择物理信息内核的重要性,并说明了此类内核对准确性和稳定性的主要影响。由于所提出的方法具有贝叶斯的解释,因此它自然可以基于与实验数据的混合模拟数据进行数据同化并进行预测和估计。

We present a Gaussian Process (GP) approach (Gaussian Process Hydrodynamics, GPH) for approximating the solution of the Euler and Navier-Stokes equations. As in Smoothed Particle Hydrodynamics (SPH), GPH is a Lagrangian particle-based approach involving the tracking of a finite number of particles transported by the flow. However, these particles do not represent mollified particles of matter but carry discrete/partial information about the continuous flow. Closure is achieved by placing a divergence-free GP prior $ξ$ on the velocity field and conditioning on vorticity at particle locations. Known physics (e.g., the Richardson cascade and velocity-increments power laws) is incorporated into the GP prior through physics-informed additive kernels. This approach allows us to coarse-grain turbulence in a statistical manner rather than a deterministic one. By enforcing incompressibility and fluid/structure boundary conditions through the selection of the kernel, GPH requires much fewer particles than SPH. Since GPH has a natural probabilistic interpretation, numerical results come with uncertainty estimates enabling their incorporation into a UQ pipeline and the adding/removing of particles (quantas of information) in an adapted manner. The proposed approach is amenable to analysis, it inherits the complexity of state-of-the-art solvers for dense kernel matrices, and it leads to a natural definition of turbulence as information loss. Numerical experiments support the importance of selecting physics-informed kernels and illustrate the major impact of such kernels on accuracy and stability. Since the proposed approach has a Bayesian interpretation, it naturally enables data assimilation and making predictions and estimations based on mixing simulation data with experimental data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源