论文标题

太阳能热化学水分裂的成分复杂的钙钛矿氧化物

Compositionally Complex Perovskite Oxides for Solar Thermochemical Water Splitting

论文作者

Zhang, Dawei, De Santiago, Hector A., Xu, Boyuan, Liu, Cijie, Trindell, Jamie, Li, Wei, Park, Jiyun, Rodriguez, Mark A., Coker, Eric N., Sugar, Josh, McDaniel, Anthony, Lany, Stephan, Ma, Liang, Wang, Yi, Collins, Gregory, Tian, Hanchen, Li, Wenyuan, Qi, Yue, Liu, Xingbo, Luo, Jian

论文摘要

太阳能化学氢(STCH)是生态友好的H2产生的有前途的方法,但是常规的STCH氧化还原化合物通常会受到热力学和动力学限制的影响,并且可调性有限。从新生的高渗透陶瓷领域扩展,本研究探讨了一类新的成分复杂的钙钛矿氧化物(LA0.8SR0.2)(MN(1-X)/3FE(1-X)/3FE(1-X)/3Coxal(1-X)(1-X)/3)O3。原位X射线衍射证明了在氧化还原循环过程中的相位稳定性,原位X射线光电子光谱显示了CO的优先氧化还原。还原的程度增加,但内在动力学降低,随着CO含量的增加。因此,(LA0.8SR0.2)(MN0.2FE0.2CO0.4AL0.2)O3-δ在热力学和动力学特性之间达到了最佳平衡。中等还原焓,还原的高熵和优选的表面氧交换动力学的组合使最大H2产率在短短的1小时氧化还原持续时间内最大395 +-11μmolG-1。熵稳定预期会导致氧化还原期间的结构稳定性,而无需相变,这可以在恶劣的中断条件下实现> 50个循环的特殊稳定性。基于密度函数理论的基于平行的蒙特卡洛计算进一步阐明了基本的氧化还原机制,该计算代表了这里首先建立的新计算范式。这项研究提出了一类新的用于STCH和化学循环的非等效构图复杂的陶瓷。

Solar thermochemical hydrogen generation (STCH) is a promising approach for eco-friendly H2 production, but conventional STCH redox compounds often suffer from thermodynamic and kinetic limitations with limited tunability. Expanding from the nascent high-entropy ceramics field, this study explores a new class of compositionally complex perovskite oxides (La0.8Sr0.2)(Mn(1-x)/3Fe(1-x)/3CoxAl(1-x)/3)O3 for STCH. In situ X-ray diffraction demonstrates the phase stability during redox cycling and in situ X-ray photoelectron spectroscopy shows preferential redox of Co. The extent of reduction increases, but the intrinsic kinetics decreases, with increased Co content. Consequently, (La0.8Sr0.2)(Mn0.2Fe0.2Co0.4Al0.2)O3-δ achieves an optimal balance between the thermodynamics and kinetics properties. The combination of a moderate enthalpy of reduction, high entropy of reduction, and preferable surface oxygen exchange kinetics enables a maximum H2 yield of 395 +- 11 μmol g-1 in a short 1-hour redox duration. Entropy stabilization expectedly contributes to the structure stability during redox without phase transformation, which enables an exceptional STCH stability for >50 cycles under harsh interrupted conditions. The underlying redox mechanism is further elucidated by the density functional theory based parallel Monte Carlo computation, which represents a new computation paradigm first established here. This study suggests a new class of non-equimolar compositionally complex ceramics for STCH and chemical looping.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源