论文标题

注意调节神经领域的注意力节奏串联

Attention Beats Concatenation for Conditioning Neural Fields

论文作者

Rebain, Daniel, Matthews, Mark J., Yi, Kwang Moo, Sharma, Gopal, Lagun, Dmitry, Tagliasacchi, Andrea

论文摘要

神经场通过将坐标输入映射到采样值来模型信号。从视觉,图形到生物学和天文学的许多领域,它们正成为越来越重要的骨干结构。在本文中,我们探讨了这些网络中常见的调理机制之间的差异,这是将神经场从信号的记忆转移到概括的基本要素,其中共同建模了位于歧管上的一组信号。特别是,我们对这些机制的缩放行为感兴趣,以对日益高维的调节变量感兴趣。正如我们在实验中显示的那样,高维条件是建模复杂数据分布的关键,因此,确定哪种体系结构在处理此类问题时最能实现哪种选择。为此,我们运行了使用串联,超网络和基于注意力的调理策略对2D,3D和4D信号进行建模的实验,这是文献中尚未进行的必要但费力的努力。我们发现,基于注意力的条件在各种环境中的其他方法都优于其他方法。

Neural fields model signals by mapping coordinate inputs to sampled values. They are becoming an increasingly important backbone architecture across many fields from vision and graphics to biology and astronomy. In this paper, we explore the differences between common conditioning mechanisms within these networks, an essential ingredient in shifting neural fields from memorization of signals to generalization, where the set of signals lying on a manifold is modelled jointly. In particular, we are interested in the scaling behaviour of these mechanisms to increasingly high-dimensional conditioning variables. As we show in our experiments, high-dimensional conditioning is key to modelling complex data distributions, thus it is important to determine what architecture choices best enable this when working on such problems. To this end, we run experiments modelling 2D, 3D, and 4D signals with neural fields, employing concatenation, hyper-network, and attention-based conditioning strategies -- a necessary but laborious effort that has not been performed in the literature. We find that attention-based conditioning outperforms other approaches in a variety of settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源