论文标题

连续的素数数字上精致且蓬松的数字

Consecutive primes which are widely digitally delicate and Brier numbers

论文作者

Filaseta, Michael, Juillerat, Jacob, Luckner, Thomas

论文摘要

使用覆盖系统和D. shiu定理,第一和第二作者表明,对于每个正整数$ k $,都存在$ k $连续数字上精致的素数。他们还指出,对于每个正整数$ k $,都有$ k $连续的素数,即布里尔数字。我们表明,对于每个正整数$ k $,都有$ k $连续的素数,这些数字数字既精致又蓬松。

Making use of covering systems and a theorem of D. Shiu, the first and second authors showed that for every positive integer $k$, there exist $k$ consecutive widely digitally delicate primes. They also noted that for every positive integer $k$, there exist $k$ consecutive primes which are Brier numbers. We show that for every positive integer $k$, there exist $k$ consecutive primes that are both widely digitally delicate and Brier numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源