论文标题

关于Lie代数$ \ MATHFRAK {G} _2 \ subset \ Mathfrak {so}(7)$,Associative $ 3 $ -PLANES和$ \ MATHFRAK {SO}(4)$ subalgebras的观察结果

Observations about the Lie algebra $\mathfrak{g}_2 \subset \mathfrak{so}(7)$, associative $3$-planes, and $\mathfrak{so}(4)$ subalgebras

论文作者

Chemtov, Max, Karigiannis, Spiro

论文摘要

我们进行了几个有关Lie代数$ \ MATHFRAK {G} _2 \ subset \ Mathfrak {so}(7)$,联想$ 3 $ -PLANES和$ \ MATHFRAK {SO}(SO}(4)$ subergebras。有些可能是众所周知的,但在文献中不容易找到,而其他结果是新的。我们表明,一个元素$ x \ in \ mathfrak {g} _2 $不能具有排名$ 2 $,如果其排名$ 4 $,则其内核是一个关联子空间。我们证明了$ \ mathfrak {g} _2 $元素的规范定理。给定一个$ \ mathbb r^7 $中的关联$ 3 $ -PLANE $ P $,我们构建了lie subalgebra $θ(p)$ of $ \ mathfrak {so}(7)=λ^2(\ mathbb r^7)$,这是等于ymomorphic to Isomorphic to Isomorphic to $ \ \ Mathfrak {so so}(so}(4)$。这个$ \ mathfrak {so}(4)$ subalgebra与$ \ mathfrak {so}(4)$ subalgebras的其他已知构造不同,由$ \ mathfrak {so}(so}(7)$确定的关联$ 3 $ - plane。这些是NSERC本科研究项目的结果。该论文是写的,以便可以吸引广泛的观众。

We make several observations relating the Lie algebra $\mathfrak{g}_2 \subset \mathfrak{so}(7)$, associative $3$-planes, and $\mathfrak{so}(4)$ subalgebras. Some are likely well-known but not easy to find in the literature, while other results are new. We show that an element $X \in \mathfrak{g}_2$ cannot have rank $2$, and if it has rank $4$ then its kernel is an associative subspace. We prove a canonical form theorem for elements of $\mathfrak{g}_2$. Given an associative $3$-plane $P$ in $\mathbb R^7$, we construct a Lie subalgebra $Θ(P)$ of $\mathfrak{so}(7) = Λ^2 (\mathbb R^7)$ that is isomorphic to $\mathfrak{so}(4)$. This $\mathfrak{so}(4)$ subalgebra differs from other known constructions of $\mathfrak{so}(4)$ subalgebras of $\mathfrak{so}(7)$ determined by an associative $3$-plane. These are results of an NSERC undergraduate research project. The paper is written so as to be accessible to a wide audience.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源