论文标题
浅水的仪表理论
A Gauge Theory for Shallow Water
论文作者
论文摘要
浅水方程描述了高度变化的薄层流体的水平流动。我们表明,可以将方程式重写为带有Chern-Simons项的D = 2+1维量规理论。该理论包含两个Abelian仪表场,对应于流体的保守高度和保守的涡度。在一定的线性近似中,浅水方程将相对论麦克斯韦 - 切尔尼·西蒙斯理论降低。这描述了庞加莱的波浪。该理论的手性边缘模式被确定为沿海开尔文波。
The shallow water equations describe the horizontal flow of a thin layer of fluid with varying height. We show that the equations can be rewritten as a d=2+1 dimensional gauge theory with a Chern-Simons term. The theory contains two Abelian gauge fields, corresponding to the conserved height and conserved vorticity of the fluid. In a certain linearised approximation, the shallow water equations reduce to relativistic Maxwell-Chern-Simons theory. This describes Poincaré waves. The chiral edge modes of the theory are identified as coastal Kelvin waves.