论文标题

部分可观测时空混沌系统的无模型预测

Discovering T-Dualities of Little String Theories

论文作者

Bhardwaj, Lakshya

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We describe a general method for deducing T-dualities of little string theories, which are dualities between these theories that arise when they are compactified on circle. The method works for both untwisted and twisted circle compactifications of little string theories and is based on surface geometries associated to these circle compactifications. The surface geometries describe information about Calabi-Yau threefolds on which M-theory can be compactified to construct the corresponding circle compactified little string theories. Using this method, we deduce at least one T-dual, and in some cases multiple T-duals, for untwisted and twisted circle compactifications of most of the little string theories that can be described on their tensor branches in terms of a 6d supersymmetric gauge theory with a simple non-abelian gauge group, which are also known as rank-0 little string theories. This includes little string theories carrying N=(1,1) and N=(1,0) supersymmetries. For many, but not all, circle compactifications of N=(1,1) little string theories, we have T-dualities that realize Langlands dualities between affine Lie algebras. Along the way, we find another discrete theta angle distinct from 0 and $π$ for an E-string node.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源