论文标题

多视图本地共发生和全球一致性学习改善乳房X线照片分类的概括

Multi-view Local Co-occurrence and Global Consistency Learning Improve Mammogram Classification Generalisation

论文作者

Chen, Yuanhong, Wang, Hu, Wang, Chong, Tian, Yu, Liu, Fengbei, Elliott, Michael, McCarthy, Davis J., Frazer, Helen, Carneiro, Gustavo

论文摘要

分析筛查乳房X线照片时,放射科医生可以自然地处理每个乳房的两个同侧视图,即颅底审计(CC)和中外侧 - 粘合物(MLO)观点。这些多个相关图像提供了互补的诊断信息,并可以提高放射科医生的分类准确性。不幸的是,大多数现有的深度学习系统,受过全球标记的图像培训,缺乏从这些多种观点中共同分析和整合全球和本地信息的能力。通过忽略筛选事件的多个图像中存在的潜在有价值的信息,人们限制了这些系统的潜在准确性。在这里,我们提出了一种基于全球一致性学习和对乳房X光检查中同侧观点的局部同时学习,该方法模仿了放射科医生的阅读程序。广泛的实验表明,在大规模的私人数据集和两个公开可用的数据集上,我们的模型在分类准确性和概括方面优于竞争方法,在该数据集和两个公开可用的数据集上,该模型被专门培训和使用全球标签进行了测试。

When analysing screening mammograms, radiologists can naturally process information across two ipsilateral views of each breast, namely the cranio-caudal (CC) and mediolateral-oblique (MLO) views. These multiple related images provide complementary diagnostic information and can improve the radiologist's classification accuracy. Unfortunately, most existing deep learning systems, trained with globally-labelled images, lack the ability to jointly analyse and integrate global and local information from these multiple views. By ignoring the potentially valuable information present in multiple images of a screening episode, one limits the potential accuracy of these systems. Here, we propose a new multi-view global-local analysis method that mimics the radiologist's reading procedure, based on a global consistency learning and local co-occurrence learning of ipsilateral views in mammograms. Extensive experiments show that our model outperforms competing methods, in terms of classification accuracy and generalisation, on a large-scale private dataset and two publicly available datasets, where models are exclusively trained and tested with global labels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源