论文标题
多视图本地共发生和全球一致性学习改善乳房X线照片分类的概括
Multi-view Local Co-occurrence and Global Consistency Learning Improve Mammogram Classification Generalisation
论文作者
论文摘要
分析筛查乳房X线照片时,放射科医生可以自然地处理每个乳房的两个同侧视图,即颅底审计(CC)和中外侧 - 粘合物(MLO)观点。这些多个相关图像提供了互补的诊断信息,并可以提高放射科医生的分类准确性。不幸的是,大多数现有的深度学习系统,受过全球标记的图像培训,缺乏从这些多种观点中共同分析和整合全球和本地信息的能力。通过忽略筛选事件的多个图像中存在的潜在有价值的信息,人们限制了这些系统的潜在准确性。在这里,我们提出了一种基于全球一致性学习和对乳房X光检查中同侧观点的局部同时学习,该方法模仿了放射科医生的阅读程序。广泛的实验表明,在大规模的私人数据集和两个公开可用的数据集上,我们的模型在分类准确性和概括方面优于竞争方法,在该数据集和两个公开可用的数据集上,该模型被专门培训和使用全球标签进行了测试。
When analysing screening mammograms, radiologists can naturally process information across two ipsilateral views of each breast, namely the cranio-caudal (CC) and mediolateral-oblique (MLO) views. These multiple related images provide complementary diagnostic information and can improve the radiologist's classification accuracy. Unfortunately, most existing deep learning systems, trained with globally-labelled images, lack the ability to jointly analyse and integrate global and local information from these multiple views. By ignoring the potentially valuable information present in multiple images of a screening episode, one limits the potential accuracy of these systems. Here, we propose a new multi-view global-local analysis method that mimics the radiologist's reading procedure, based on a global consistency learning and local co-occurrence learning of ipsilateral views in mammograms. Extensive experiments show that our model outperforms competing methods, in terms of classification accuracy and generalisation, on a large-scale private dataset and two publicly available datasets, where models are exclusively trained and tested with global labels.