论文标题
使用参数化量子电路学习傅立叶系列
Learning Fourier series with parametrized quantum circuits
论文作者
论文摘要
变性量子算法(VQA)及其在量子机中通过参数化量子电路(PQC)在量子机学习领域中的应用被认为是利用嘈杂的中间尺度量子计算设备的一种主要方法。但是,某些VQA体系结构的性能差异通常不清楚,因为既没有建立的最佳实践以及详细的研究。在本文中,我们建立在Schuld等人的作品的基础上。 [物理。 Rev. A 103,032430(2021)]和Vidal等人。 [正面。物理。 8,297(2020)]通过比较流行的PQC的Ansätze学习程度如何,学习了不同的一维截短傅立叶系列。我们还检查了Beer等人介绍的耗散性量子神经网络(DQNN)。 [Nat。社区。 11,808(2020)],并提出了DQNNS的数据重新上传结构,以提高其对此回归任务的能力。通过比较不同PQC体系结构的结果,我们可以提供设计有效PQC的指南。
Variational quantum algorithms (VQAs) and their applications in the field of quantum machine learning through parametrized quantum circuits (PQCs) are thought to be one major way of leveraging noisy intermediate-scale quantum computing devices. However, differences in the performance of certain VQA architectures are often unclear since established best practices, as well as detailed studies, are missing. In this paper, we build upon the work by Schuld et al. [Phys. Rev. A 103, 032430 (2021)] and Vidal et al. [Front. Phys. 8, 297 (2020)] by comparing how well popular ansätze for PQCs learn different one-dimensional truncated Fourier series. We also examine dissipative quantum neural networks (dQNN) as introduced by Beer et al. [Nat. Commun. 11, 808 (2020)] and propose a data reupload structure for dQNNs to increase their capability for this regression task. By comparing the results for different PQC architectures, we can provide guidelines for designing efficient PQCs.