论文标题

用反设计的,元分散微孔子定制微瘤

Tailoring microcombs with inverse-designed, meta-dispersion microresonators

论文作者

Lucas, Erwan, Yu, Su-Peng, Briles, Travis C., Carlson, David R., Papp, Scott B.

论文摘要

光学微孔子中的非线性波混合提供了新的观点,可以产生紧凑的光频微量镜头,从而实现了不断增长的应用。 Microcombs表现出一个光谱曲线,主要由它们的微孔子的色散确定。一个示例是$ \ peripatorname {sech}^2 $散发性kerr solitons sulitons在异常的群速度分散下。在这里,我们通过优化谐振器中的任意元分散来引入一种反设计方法来塑造微型群。通过将系统的管理方程式纳入遗传算法,我们能够有效地识别出产生微骨与用户定义的目标频谱相匹配的分散曲线,例如频谱挡板梳子或近高斯脉冲。我们使用光子 - 晶共谐振器中的选择性双向模式杂交来展示这些复杂的优化分散曲线的具体实现。此外,我们制造并探索了具有如此灵活的“元色散控制”的几个微型发电机。它们的分散不仅受波导组成的谐振器的控制,而且还通过谐振器内部的波纹,该波形在谐振器中几何控制双向耦合的光谱分布。这种方法提供了可编程模式划分的频率分割,因此大大增加了控制光学状态(例如Kerr solitons)非线性动力学的设计空间。

Nonlinear-wave mixing in optical microresonators offers new perspectives to generate compact optical-frequency microcombs, which enable an ever-growing number of applications. Microcombs exhibit a spectral profile that is primarily determined by their microresonator's dispersion; an example is the $ \operatorname{sech}^2 $ spectrum of dissipative Kerr solitons under anomalous group-velocity dispersion. Here, we introduce an inverse-design approach to spectrally shape microcombs, by optimizing an arbitrary meta-dispersion in a resonator. By incorporating the system's governing equation into a genetic algorithm, we are able to efficiently identify a dispersion profile that produces a microcomb closely matching a user-defined target spectrum, such as spectrally-flat combs or near-Gaussian pulses. We show a concrete implementation of these intricate optimized dispersion profiles, using selective bidirectional-mode hybridization in photonic-crystal resonators. Moreover, we fabricate and explore several microcomb generators with such flexible `meta' dispersion control. Their dispersion is not only controlled by the waveguide composing the resonator, but also by a corrugation inside the resonator, which geometrically controls the spectral distribution of the bidirectional coupling in the resonator. This approach provides programmable mode-by-mode frequency splitting and thus greatly increases the design space for controlling the nonlinear dynamics of optical states such as Kerr solitons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源