论文标题

快速射击自我牵键的半监督政治倾向预测

Fast Few shot Self-attentive Semi-supervised Political Inclination Prediction

论文作者

Chakraborty, Souvic, Goyal, Pawan, Mukherjee, Animesh

论文摘要

随着共同群众参与社交媒体的不断增加,政策制定者/记者在社交媒体上进行在线民意调查以了解人们在特定地点的政治倾向是越来越普遍的。这里的警告是,只有有影响力的人才能进行这样的在线民意调查并大规模伸展。此外,在这种情况下,选民的分配是不可控制的,实际上可能是有偏见的。另一方面,如果我们可以通过社交媒体来解释公开可用的数据以探测用户的政治倾向,那么我们将能够对调查人群有可控的见解,保持低调的调查成本,并收集公开可用的数据而无需参与有关人员。因此,我们引入了一个自我牵键的半监督框架,以进一步实现这一目标。我们模型的优点是,它既不需要大量的培训数据,也不需要存储社交网络参数。然而,它在没有带注释的数据的情况下达到了93.7 \%的精度。此外,每个课程只有几个注释的示例可以实现竞争性能。 我们发现,即使在资源约束的设置中,该模型也非常有效,并且从其预测中得出的见解与手动调查结果相匹配时,将其应用于不同的现实生活中。

With the rising participation of the common mass in social media, it is increasingly common now for policymakers/journalists to create online polls on social media to understand the political leanings of people in specific locations. The caveat here is that only influential people can make such an online polling and reach out at a mass scale. Further, in such cases, the distribution of voters is not controllable and may be, in fact, biased. On the other hand,if we can interpret the publicly available data over social media to probe the political inclination of users, we will be able to have controllable insights about the survey population, keep the cost of survey low and also collect publicly available data without involving the concerned persons. Hence we introduce a self-attentive semi-supervised framework for political inclination detection to further that objective. The advantage of our model is that it neither needs huge training data nor does it need to store social network parameters. Nevertheless, it achieves an accuracy of 93.7\% with no annotated data; further, with only a few annotated examples per class it achieves competitive performance. We found that the model is highly efficient even in resource-constrained settings, and insights drawn from its predictions match the manual survey outcomes when applied to diverse real-life scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源