论文标题
有限的多项式同谋与系数
Finite polynomial cohomology with coefficients
论文作者
论文摘要
在本文中,我们介绍了有限多项式的共同体理论。我们证明了几个基本属性,并引入了带有系数的亚伯 - 雅各比图。作为应用,我们使用这样的协同学理论来研究$ \ mathbb {q} $的紧凑型Shimura曲线的算术,并简化了Darmon-Rotger和Bertolini-Darmon-Prasanna的作品的证明。
We introduce a theory of finite polynomial cohomology with coefficients in this paper. We prove several basic properties and introduce an Abel-Jacobi map with coefficients. As applications, we use such a cohomology theory to study arithmetics of compact Shimura curves over $\mathbb{Q}$, and simplify proofs of the works of Darmon-Rotger and Bertolini-Darmon-Prasanna.