论文标题
材料中快速重离子效应建模的边界,挑战和解决方案
Frontiers, challenges, and solutions in modeling of swift heavy ion effects in materials
论文作者
论文摘要
由于在过去十年中,已经实现了对迅速重离子(SHI)在电子停止政权中减速的影响的基本理解的一些突破,因此它促使我们回顾了SHI效应建模的最先进方法。 SHI轨道动力学通过几个分离的阶段进行:从目标中的离子撞击电离沉积能量中的attoseconds到目标中的fleseconds of Electron Transport和hole Cascades,到晶格激发和反应的Picseconts,到原子宽松的纳米sectots,甚至是原子镜的纳米秒。每个阶段都需要自己的方法来进行定量描述。我们讨论,了解阶段之间的链接使得在不拟合程序的情况下描述多尺度模型中的整个曲目动力学是可能的。综述着重于每个过程的潜在物理机制,它们产生的主要效果以及现有方法的局限性以及实施这些模型的各种数值技术。它概述了基于Ab-Initio的电子特性演化的建模;非平衡电子传输的蒙特卡洛模拟;原子反应在表面和整体中的分子动力学建模;原子缺陷动力学动力学的动力学卡洛;轨道与描述蚀刻动力学的化学溶剂相互作用的有限差分方法。我们概述了将这些方法融入多尺度多学科模型的现代方法,并指出了它们的瓶颈,优势和劣势。分析伴随着重要结果的示例,以改善各种材料中对轨道形成的理解。总结了赛道形成过程领域的最新进展,评论对现象提供了全面的图片和详细的理解。
Since a few breakthroughs in the fundamental understanding of the effects of swift heavy ions (SHI) decelerating in the electronic stopping regime in the matter have been achieved in the last decade, it motivated us to review the state-of-the-art approaches in the modeling of SHI effects. The SHI track kinetics occurs via several well-separated stages: from attoseconds in ion-impact ionization depositing energy in a target, to femtoseconds of electron transport and hole cascades, to picoseconds of lattice excitation and response, to nanoseconds of atomic relaxation, and even longer macroscopic reaction. Each stage requires its own approaches for quantitative description. We discuss that understanding the links between the stages makes it possible to describe the entire track kinetics within a multiscale model without fitting procedures. The review focuses on the underlying physical mechanisms of each process, the dominant effects they produce, and the limitations of the existing approaches as well as various numerical techniques implementing these models. It provides an overview of ab-initio-based modeling of the evolution of the electronic properties; Monte Carlo simulations of nonequilibrium electronic transport; molecular dynamics modeling of atomic reaction on the surface and in the bulk; kinetic Mote Carlo of atomic defect kinetics; finite-difference methods of tracks interaction with chemical solvents describing etching kinetics. We outline the modern methods that couple these approaches into multiscale multidisciplinary models and point to their bottlenecks, strengths, and weaknesses. The analysis is accompanied by examples of important results improving the understanding of track formation in various materials. Summarizing the most recent advances in the field of the track formation process, the review delivers a comprehensive picture and detailed understanding of the phenomena.