论文标题

流体方程的二元模型:调查

Dyadic models for fluid equations: a survey

论文作者

Cheskidov, Alexey, Dai, Mimi, Friedlander, Susan

论文摘要

在过去的几个世纪中,数学家受到偏微分方程(PDE)的挑战,这些方程式在许多物理环境中描述了流体的运动。在过去的一百年中,取得了重要而美丽的结果,包括在Navier-Stokes方程式上的Ladyzhenskaya开创性的作品。然而,诸如三维Navier-Stokes方程的存在,独特性和规律性之类的关键问题仍然开放。部分原因是由于湍流现象的一部分,部分原因是通过研究保留了一些原始非线性特征的较简单近似系统的研究,因此寻求了对完整PDE的见解。一个更简单的系统是一个无线耦合的非线性普通微分方程组,称为二元模型。在这项调查中,我们简要概述了二元模型,并描述了最新结果。特别是,我们在存在,独特性和解决方案的规律性的背景下讨论了某些二元模型的结果。

Over the centuries mathematicians have been challenged by the partial differential equations (PDEs) that describe the motion of fluids in many physical contexts. Important and beautiful results were obtained in the past one hundred years, including the groundbreaking work of Ladyzhenskaya on the Navier-Stokes equations. However crucial questions such as the existence, uniqueness and regularity of the three dimensional Navier-Stokes equations remain open. Partly because of this mathematical challenge and partly motivated by the phenomena of turbulence, insights into the full PDEs have been sought via the study of simpler approximating systems that retain some of the original nonlinear features. One such simpler system is an infinite dimensional coupled set of nonlinear ordinary differential equations referred to a dyadic model. In this survey we provide a brief overview of dyadic models and describe recent results. In particular, we discuss results for certain dyadic models in the context of existence, uniqueness and regularity of solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源