论文标题

与迭代积分和神经网络混乱的对冲

Chaotic Hedging with Iterated Integrals and Neural Networks

论文作者

Neufeld, Ariel, Schmocker, Philipp

论文摘要

在本文中,我们基于迭代的Stratonovich积分来得出$ l^p $ -CHAOS扩展,相对于给定的指数性连续连续的Semimartingale。通过省略扩展的正交性,我们表明,可以通过有限的迭代stratonovich积分来近似[1,\ infty)$ in [1,\ infty)$ in [1,\ infty)$的$ p \。使用(可能是随机)神经网络作为集成,我们在$ l^p $ sense中获得了$ p $积分金融衍生品的通用近似结果。此外,我们可以大致解决$ l^p $ - hedging问题(恰好与二次对冲问题相吻合),在此,可以在短期运行时以封闭形式计算近似的对冲策略。

In this paper, we derive an $L^p$-chaos expansion based on iterated Stratonovich integrals with respect to a given exponentially integrable continuous semimartingale. By omitting the orthogonality of the expansion, we show that every $p$-integrable functional, $p \in [1,\infty)$, can be approximated by a finite sum of iterated Stratonovich integrals. Using (possibly random) neural networks as integrands, we therefere obtain universal approximation results for $p$-integrable financial derivatives in the $L^p$-sense. Moreover, we can approximately solve the $L^p$-hedging problem (coinciding for $p = 2$ with the quadratic hedging problem), where the approximating hedging strategy can be computed in closed form within short runtime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源