论文标题

使用机器学习模型在天然气管道中泄漏检测

Leak Detection in Natural Gas Pipeline Using Machine Learning Models

论文作者

Oshingbesan, Adebayo

论文摘要

天然气管道中的泄漏检测是石油和天然气行业的一个重要且持续的问题。这尤其重要,因为管道是运输天然气的最常见方法。这项研究旨在研究数据驱动的智能模型使用基本操作参数检测天然气管道的小泄漏的能力,然后使用现有的性能指标比较智能模型。该项目使用观察者设计技术使用回归分类层次模型来检测天然气管道中的泄漏,其中智能模型充当回归器,并且修改后的逻辑回归模型充当分类器。该项目使用四个星期的管道数据流研究了五个智能模型(梯度提升,决策树,随机森林,支持向量机和人工神经网络)。结果表明,虽然支持向量机和人工神经网络比其他网络更好,但由于其内部复杂性和所使用的数据量,它们并未提供最佳的泄漏检测结果。随机森林和决策树模型是最敏感的,因为它们可以在大约2小时内检测到标称流量的0.1%的泄漏。所有智能模型在测试阶段中具有高可靠性,零错误警报率。将所有智能模型泄漏检测的平均时间与文献中的实时短暂模型进行了比较。结果表明,智能模型在泄漏检测问题中的表现相对良好。该结果表明,智能模型可以与实时瞬态模型一起使用,以显着改善泄漏检测结果。

Leak detection in gas pipelines is an important and persistent problem in the Oil and Gas industry. This is particularly important as pipelines are the most common way of transporting natural gas. This research aims to study the ability of data-driven intelligent models to detect small leaks for a natural gas pipeline using basic operational parameters and then compare the intelligent models among themselves using existing performance metrics. This project applies the observer design technique to detect leaks in natural gas pipelines using a regressoclassification hierarchical model where an intelligent model acts as a regressor and a modified logistic regression model acts as a classifier. Five intelligent models (gradient boosting, decision trees, random forest, support vector machine and artificial neural network) are studied in this project using a pipeline data stream of four weeks. The results shows that while support vector machine and artificial neural networks are better regressors than the others, they do not provide the best results in leak detection due to their internal complexities and the volume of data used. The random forest and decision tree models are the most sensitive as they can detect a leak of 0.1% of nominal flow in about 2 hours. All the intelligent models had high reliability with zero false alarm rate in testing phase. The average time to leak detection for all the intelligent models was compared to a real time transient model in literature. The results show that intelligent models perform relatively well in the problem of leak detection. This result suggests that intelligent models could be used alongside a real time transient model to significantly improve leak detection results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源