论文标题

对值得信赖的推荐系统的全面调查

A Comprehensive Survey on Trustworthy Recommender Systems

论文作者

Fan, Wenqi, Zhao, Xiangyu, Chen, Xiao, Su, Jingran, Gao, Jingtong, Wang, Lin, Liu, Qidong, Wang, Yiqi, Xu, Han, Chen, Lei, Li, Qing

论文摘要

作为最成功的AI驱动应用程序之一,推荐系统旨在通过在我们生活的许多方面提供个性化建议,尤其是针对各种面向人工的在线服务,例如电子商务平台和社交媒体网站,以有效而有效的方式帮助人们做出适当的决定。在过去的几十年中,推荐系统的快速发展通过创造经济价值,节省了时间和精力以及促进社会利益,从而使人类受益匪浅。但是,最近的研究发现,数据驱动的推荐系统可能会对用户和社会构成严重威胁,例如传播虚假新闻以操纵社交媒体网站中的公众舆论,扩大不公平的对工作不足的团体或在工作匹配服务中的个人,或从建议结果中推断出隐私信息。因此,系统的可信赖性一直吸引着各个方面的关注,以减轻推荐系统引起的负面影响,以增强公众对推荐系统技术的信任。在这项调查中,我们提供了对值得信赖的推荐系统(TREC)的全面概述,特别关注六个最重要的方面;即安全与鲁棒性,非歧视与公平,解释性,隐私性,环境福祉以及问责制和可审计性。对于每个方面,我们总结了最近的相关技术,并讨论了潜在的研究方向,以帮助实现未来值得推荐的推荐系统。

As one of the most successful AI-powered applications, recommender systems aim to help people make appropriate decisions in an effective and efficient way, by providing personalized suggestions in many aspects of our lives, especially for various human-oriented online services such as e-commerce platforms and social media sites. In the past few decades, the rapid developments of recommender systems have significantly benefited human by creating economic value, saving time and effort, and promoting social good. However, recent studies have found that data-driven recommender systems can pose serious threats to users and society, such as spreading fake news to manipulate public opinion in social media sites, amplifying unfairness toward under-represented groups or individuals in job matching services, or inferring privacy information from recommendation results. Therefore, systems' trustworthiness has been attracting increasing attention from various aspects for mitigating negative impacts caused by recommender systems, so as to enhance the public's trust towards recommender systems techniques. In this survey, we provide a comprehensive overview of Trustworthy Recommender systems (TRec) with a specific focus on six of the most important aspects; namely, Safety & Robustness, Nondiscrimination & Fairness, Explainability, Privacy, Environmental Well-being, and Accountability & Auditability. For each aspect, we summarize the recent related technologies and discuss potential research directions to help achieve trustworthy recommender systems in the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源