论文标题

低度稳健的Hellinger-Reissner-Reissner有限元方案,用于平面线性弹性,并具有对称应力张量

Low-degree robust Hellinger-Reissner finite element schemes for planar linear elasticity with symmetric stress tensors

论文作者

Zhang, Shuo

论文摘要

在本文中,我们研究了低度稳健有限元方案的构建,以实现一般三角形的平面线性弹性。 首先,我们提出了一个低度不合格的Helling-Reissner有限元方案。对于应力张量空间,分段多项式形状函数空间为$$ {\ rm span} \ left \ {\ left(\ begin {array} {ccc} {cc} 1&0 \ \ 0&0&0&0 \ end {arnay} 0 \ end {array} \ right),\ left(\ begin {array} {cc} 0&0&0 \\ 0&1 \ end {array} \ right),\ left(\ begin {array} 0 \ end {array} \ right),\ left(\ begin {arnay} {cc} 0&y \\ y&0 \ y&0 \ end {array} \ right),\ left(\ begin {arnay} {array} {cc} {cc} {cc} 0&x^2-y^2-y^2-y^2 y^2 y^2 y^2 y^2 y^y^2 y \ $ nary}总空间的尺寸渐近地是顶点数量的8次,基本函数的支撑是每个边缘的斑块。分段刚体空间用于位移。列出了$ \ mathbb {l}^2 $中的强大错误估计和$ \ mathbf {h}({\ rm div})$ norms。 其次,我们研究了具有最低程度多项式函数空间的方案的理论结构。具体来说,构建了Hellinger-Reissner的有限元方案,其局部形状功能空间是压力张量为5维的,这对于$ \ Mathbf {H}的局部近似值是最低的,({\ rm div}; \ Mathbb {s})$,以及用于置换构成的空间。 $ \ mathbb {l}^2 $中的强大错误估计和$ \ MATHBF {h}({\ rm div})$ narms用于常规解决方案和数据。

In this paper, we study the construction of low-degree robust finite element schemes for planar linear elasticity on general triangulations. Firstly, we present a low-degree nonconforming Helling-Reissner finite element scheme. For the stress tensor space, the piecewise polynomial shape function space is $$ {\rm span}\left\{\left(\begin{array}{cc}1&0\\ 0 & 0\end{array}\right),\left(\begin{array}{cc}0&1\\ 1 & 0\end{array}\right),\left(\begin{array}{cc}0&0\\ 0 & 1\end{array}\right),\left(\begin{array}{cc}0&x\\ x & 0\end{array}\right),\left(\begin{array}{cc}0&y\\ y & 0\end{array}\right),\left(\begin{array}{cc}0&x^2-y^2\\ x^2-y^2 & 0\end{array}\right)\right\}, $$ the dimension of the total space is asymptotically 8 times of the number of vertices, and the supports of the basis functions are each a patch of an edge. The piecewise rigid body space is used for the displacement. Robust error estimations in $\mathbb{L}^2$ and broken $\mathbf{H}({\rm div})$ norms are presented. Secondly, we investigate the theoretical construction of schemes with lowest-degree polynomial shape function spaces. Specifically, a Hellinger-Reissner finite element scheme is constructed, with the local shape function space for the stress tensor being 5-dimensional which is of the lowest degree for the local approximation of $\mathbf{H}({\rm div};\mathbb{S})$, and the space for the displacement is piecewise constants. Robust error estimations in $\mathbb{L}^2$ and broken $\mathbf{H}({\rm div})$ norms are presented for regular solutions and data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源