论文标题

使用遥感本地数据对野火网格图的多时间预测

Multi-time Predictions of Wildfire Grid Map using Remote Sensing Local Data

论文作者

Yoon, Hyung-Jin, Voulgaris, Petros

论文摘要

由于最近的气候变化,我们在美国发现了更频繁和严重的野火。预测野火对于预防自然灾害和缓解至关重要。数据处理和通信技术的进步使我们能够访问遥感数据。借助遥感数据,可以创建有价值的时空统计模型,并用于资源管理实践。本文提出了一个分布式学习框架,该框架共享在整个当地代理商中在美国西部十个地点收集的本地数据。当地代理商旨在预测野火网格地图一,二,三和四个星期,同时在线处理遥感数据流。所提出的模型具有不同的特征,可以解决预测评估中的特征需求,包括动态在线估计和时间序列建模。当地火灾事件触发器在位置之间并未隔离,并且由于状态观察不完整而分析本地数据时存在混杂因素。与现有的方法相比,没有说明野火时间序列数据中不完整的状态观察结果,我们平均可以实现更高的预测性能。

Due to recent climate changes, we have seen more frequent and severe wildfires in the United States. Predicting wildfires is critical for natural disaster prevention and mitigation. Advances in technologies in data processing and communication enabled us to access remote sensing data. With the remote sensing data, valuable spatiotemporal statistical models can be created and used for resource management practices. This paper proposes a distributed learning framework that shares local data collected in ten locations in the western USA throughout the local agents. The local agents aim to predict wildfire grid maps one, two, three, and four weeks in advance while online processing the remote sensing data stream. The proposed model has distinct features that address the characteristic need in prediction evaluations, including dynamic online estimation and time-series modeling. Local fire event triggers are not isolated between locations, and there are confounding factors when local data is analyzed due to incomplete state observations. Compared to existing approaches that do not account for incomplete state observation within wildfire time-series data, on average, we can achieve higher prediction performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源