论文标题
ECSA:探索自动驾驶中动作序列的关键方案
ECSAS: Exploring Critical Scenarios from Action Sequence in Autonomous Driving
论文作者
论文摘要
临界场景生成需要在逻辑方案中从无限参数空间中采样临界组合的能力。现有的解决方案旨在探索在初始场景而不是动作序列中动作参数的相关性。如何对动作序列进行建模,以便可以进一步考虑方案中不同动作参数的效果是问题的瓶颈。在本文中,我们通过提出ECSAS框架来攻击问题。具体来说,我们首先提出了一种描述语言BTScenario,使我们能够对场景的动作序列进行建模。然后,我们使用强化学习来搜索关键动作参数的组合。为了提高效率,我们进一步提出了几种优化,包括动作掩盖和重播缓冲液。我们已经实施了ECSA,实验结果表明,在各种非平凡场景中,它比随机和组合测试等本地方法更有效。
Critical scenario generation requires the ability of sampling critical combinations from the infinite parameter space in the logic scenario. Existing solutions aim to explore the correlation of action parameters in the initial scenario rather than action sequences. How to model action sequences so that one can further consider the effects of different action parameters in the scenario is the bottleneck of the problem. In this paper, we attack the problem by proposing the ECSAS framework. Specifically, we first propose a description language, BTScenario, allowing us to model action sequences of the scenarios. We then use reinforcement learning to search for combinations of critical action parameters. To increase efficiency, we further propose several optimizations, including action masking and replay buffer. We have implemented ECSAS, and experimental results show that it is more efficient than native approaches such as random and combination testing in various nontrivial scenarios.