论文标题

Euler方程的空间准周期溶液

Spatially quasi-periodic solutions of the Euler equation

论文作者

Sun, Xu, Topalov, Peter

论文摘要

我们开发了一个框架,用于研究$ \ mathbb {r}^n $上的准周期地图和差异性。作为一个应用程序,我们证明了Euler方程在$ \ mathbb {r}^n $上局部很好地摆放在准周期矢量字段的空间中。特别是,该方程保留了初始数据的空间准周期性。证明了解决方案对时间和初始数据的分析依赖性的几个结果。

We develop a framework for studying quasi-periodic maps and diffeomorphisms on $\mathbb{R}^n$. As an application, we prove that the Euler equation is locally well posed in a space of quasi-periodic vector fields on $\mathbb{R}^n$. In particular, the equation preserves the spatial quasi-periodicity of the initial data. Several results on the analytic dependence of solutions on the time and the initial data are proved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源