论文标题

DS JT重力和双刻度SYK

dS JT Gravity and Double-Scaled SYK

论文作者

Rahman, Adel A.

论文摘要

本文推动了[1]中提出的猜想,即Syk模型的高温双尺度极限($ \ Mathrm {dssyk} _ {\ infty} $)描述了一个类似于保姆的空间。我们确定了一种特定的散装理论,我们认为,我们认为是$ \ mathrm {dssyk} _ {\ infty} $,即带正宇宙常数的JT重力(DS-JT)。我们将注意力集中在DS-JT的特定解决方案上,其中时空是DS $ _2 $的特定有限的子手机,Dilaton的轮廓与静态贴片的径向坐标相吻合。该解决方案可以理解为DS $ _3 $的维度减少,并且以前在[2]的情况下研究了与我们不同的上下文。我们详细描述了该解决方案的几何形状,并讨论了该解决方案的物理学与$ \ mathrm {dssyk} _ {\ infty} $相匹配的某些方法。我们描述了全息散装出现的示例,并找到了时间尺度$ t_* \ simβ_ {\ mathrm {gh}} \ log(s)$的新角色,作为管理这种出现的时间表。我们讨论了关于边界对运算符映射的一些限制。本文为L. Susskind提供的同伴论文[3]提供了其他背景和上下文,该论文将同时出现。

This paper pushes forward a conjecture made in [1] that a high-temperature double-scaled limit of the SYK model ($\mathrm{DSSYK}_{\infty}$) describes a de Sitter-like space. We identify a specific bulk theory which we conjecture to be dual to $\mathrm{DSSYK}_{\infty}$, namely JT gravity with positive cosmological constant (dS-JT). We focus our attention on a specific solution of dS-JT in which spacetime is a particular bounded submanifold of dS$_2$ and the profile of the dilaton coincides with that of the radial coordinate of a static patch. This solution can be understood as a dimensional reduction of dS$_3$ and was previously studied by [2] in a context different than ours. We describe the geometry of this solution in detail and discuss some ways in which the physics of this solution matches known physics of $\mathrm{DSSYK}_{\infty}$. We describe an example of holographic bulk emergence and find a new role for the timescale $t_* \sim β_{\mathrm{GH}}\log(S)$ as the timescale governing this emergence. We discuss some constraints on the boundary-to-bulk operator mapping. This paper provides additional background and context for a companion paper [3] by L. Susskind, which will appear simultaneously.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源