论文标题
随机步行范围的渐近能力在图形的自由产品上
Asymptotic Capacity of the Range of Random Walks on Free Products of Graphs
论文作者
论文摘要
在本文中,我们证明了在图形的自由产品上随机步行范围的渐近能力存在。特别是,我们将证明该范围的渐近能力几乎肯定是恒定的,并且严格为正。此外,我们为该范围的容量提供了一个中心限制定理,并表明它在有限支持的恒定支持的概率指标方面实现了相反。
In this article we prove existence of the asymptotic capacity of the range of random walks on free products of graphs. In particular, we will show that the asymptotic capacity of the range is almost surely constant and strictly positive. Furthermore, we provide a central limit theorem for the capacity of the range and show that it varies real-analytically in terms of finitely supported probability measures of constant support.