论文标题
探索不一致的知识蒸馏以通过数据扩展来检测对象检测
Exploring Inconsistent Knowledge Distillation for Object Detection with Data Augmentation
论文作者
论文摘要
对象检测的知识蒸馏(KD)旨在通过从教师模型中转移知识来训练紧凑的检测器。由于教师模型以与人类不同的方式感知数据,因此现有的KD方法只会提取知识,这些知识与人类专家注释的标签一致,同时忽略了与人类看法不一致的知识,从而导致蒸馏和优于次优的性能。在本文中,我们提出了不一致的知识蒸馏(IKD),旨在提炼教师模型违反直觉的看法中固有的知识。我们首先考虑教师模型对频率和非稳定功能的反直觉看法。与以前利用细颗粒功能或引入其他正规化的作品不同,我们通过使用数据扩展提供多种输入来提取不一致的知识。具体而言,我们提出了一种特定于样本的数据扩展,以传递教师模型捕获不同频率组件的能力,并提出了对抗性功能的增强,以提取教师模型对数据中不舒适特征的看法。广泛的实验证明了我们的方法的有效性,该方法在一个阶段,两阶段和无锚的对象检测器上胜过最先进的KD基线(最多+1.0 MAP)。我们的代码将在\ url {https://github.com/jwliang007/ikd.git}中提供。
Knowledge Distillation (KD) for object detection aims to train a compact detector by transferring knowledge from a teacher model. Since the teacher model perceives data in a way different from humans, existing KD methods only distill knowledge that is consistent with labels annotated by human expert while neglecting knowledge that is not consistent with human perception, which results in insufficient distillation and sub-optimal performance. In this paper, we propose inconsistent knowledge distillation (IKD), which aims to distill knowledge inherent in the teacher model's counter-intuitive perceptions. We start by considering the teacher model's counter-intuitive perceptions of frequency and non-robust features. Unlike previous works that exploit fine-grained features or introduce additional regularizations, we extract inconsistent knowledge by providing diverse input using data augmentation. Specifically, we propose a sample-specific data augmentation to transfer the teacher model's ability in capturing distinct frequency components and suggest an adversarial feature augmentation to extract the teacher model's perceptions of non-robust features in the data. Extensive experiments demonstrate the effectiveness of our method which outperforms state-of-the-art KD baselines on one-stage, two-stage and anchor-free object detectors (at most +1.0 mAP). Our codes will be made available at \url{https://github.com/JWLiang007/IKD.git}.