论文标题
Twitter主题分类
Twitter Topic Classification
论文作者
论文摘要
社交媒体平台主持了有关每天出现的各种主题的讨论。理解所有内容并将其组织成类别是一项艰巨的任务。处理此问题的一种常见方法是依靠主题建模,但是使用此技术发现的主题很难解释,并且从语料库到语料库可能会有所不同。在本文中,我们提出了一项基于Tweet主题分类的新任务,并发布两个相关的数据集。鉴于涵盖社交媒体中最重要的讨论点的广泛主题,我们提供了最近时间段的培训和测试数据,可用于评估推文分类模型。此外,我们在任务上对当前通用和领域的语言模型进行定量评估和分析,这为任务的挑战和性质提供了更多见解。
Social media platforms host discussions about a wide variety of topics that arise everyday. Making sense of all the content and organising it into categories is an arduous task. A common way to deal with this issue is relying on topic modeling, but topics discovered using this technique are difficult to interpret and can differ from corpus to corpus. In this paper, we present a new task based on tweet topic classification and release two associated datasets. Given a wide range of topics covering the most important discussion points in social media, we provide training and testing data from recent time periods that can be used to evaluate tweet classification models. Moreover, we perform a quantitative evaluation and analysis of current general- and domain-specific language models on the task, which provide more insights on the challenges and nature of the task.