论文标题

神经图数据库

Neural Graph Databases

论文作者

Besta, Maciej, Iff, Patrick, Scheidl, Florian, Osawa, Kazuki, Dryden, Nikoli, Podstawski, Michal, Chen, Tiancheng, Hoefler, Torsten

论文摘要

图数据库(GDB)启用对非结构化,复杂,丰富且通常庞大的图形数据集的处理和分析。尽管GDB在学术界和行业中都具有很高的意义,但几乎没有努力将它们与图形神经网络(GNN)的预测能力融为一体。在这项工作中,我们展示了如何将几乎所有GNN模型与GDB的计算功能无缝相结合。为此,我们观察到这些系统的大多数基于或支持,称为标记的属性图(LPG),顶点和边缘可以任意复杂的标签和属性集。然后,我们开发LPG2VEC,这是一种编码器,将任意LPG数据集转换为可以与广泛的GNN类直接使用的表示形式,包括卷积,注意力,消息通话,甚至高阶或光谱模型。在我们的评估中,我们表明,与没有LPG标签/属性的图形相比,LPG2VEC适当保留了代表LPG标签和性质的丰富信息,它可以通过LPG2VEC正确保留,而与无LPG标签/属性相比,它可以提高预测的准确性,而不管有针对性的学习任务或使用过的GNN模型。通常,LPG2VEC可以将最强大的GNN的预测能力与LPG模型中编码的全部信息范围相结合,为神经图数据库铺平了道路,这是一类系统的系统,其中维护的数据的极高复杂性将从现代和未来的未来图形机器学习方法中受益。

Graph databases (GDBs) enable processing and analysis of unstructured, complex, rich, and usually vast graph datasets. Despite the large significance of GDBs in both academia and industry, little effort has been made into integrating them with the predictive power of graph neural networks (GNNs). In this work, we show how to seamlessly combine nearly any GNN model with the computational capabilities of GDBs. For this, we observe that the majority of these systems are based on, or support, a graph data model called the Labeled Property Graph (LPG), where vertices and edges can have arbitrarily complex sets of labels and properties. We then develop LPG2vec, an encoder that transforms an arbitrary LPG dataset into a representation that can be directly used with a broad class of GNNs, including convolutional, attentional, message-passing, and even higher-order or spectral models. In our evaluation, we show that the rich information represented as LPG labels and properties is properly preserved by LPG2vec, and it increases the accuracy of predictions regardless of the targeted learning task or the used GNN model, by up to 34% compared to graphs with no LPG labels/properties. In general, LPG2vec enables combining predictive power of the most powerful GNNs with the full scope of information encoded in the LPG model, paving the way for neural graph databases, a class of systems where the vast complexity of maintained data will benefit from modern and future graph machine learning methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源