论文标题

主动粒子滤网网络:有效的活动定位在连续的动作空间和大图中

Active Particle Filter Networks: Efficient Active Localization in Continuous Action Spaces and Large Maps

论文作者

Honerkamp, Daniel, Guttikonda, Suresh, Valada, Abhinav

论文摘要

准确的本地化是大多数机器人任务的关键要求。现有工作的主体集中在被动定位上,其中假定了机器人的动作,从而从对抽样信息性观察的影响中抽象出来。尽管最近的工作表明学习动作的好处是消除机器人的姿势,但这些方法仅限于颗粒状的离散动作,直接取决于全球地图的大小。我们提出了主动粒子滤网网络(APFN),这种方法仅依赖于本地信息来进行可能的评估以及决策。为此,我们将可区分的粒子过滤器与加固学习剂进行了介绍,该材料会参与地图中最相关的部分。所得的方法继承了粒子过滤器的计算益处,并且可以直接在连续的动作空间中起作用,同时保持完全可区分,从而端到端优化以及对输入模式的不可知论。我们通过在现实世界中3D扫描的公寓建造的影像现实主义室内环境中进行了广泛的实验来证明我们的方法的好处。视频和代码可在http://apfn.cs.uni-freiburg.de上找到。

Accurate localization is a critical requirement for most robotic tasks. The main body of existing work is focused on passive localization in which the motions of the robot are assumed given, abstracting from their influence on sampling informative observations. While recent work has shown the benefits of learning motions to disambiguate the robot's poses, these methods are restricted to granular discrete actions and directly depend on the size of the global map. We propose Active Particle Filter Networks (APFN), an approach that only relies on local information for both the likelihood evaluation as well as the decision making. To do so, we couple differentiable particle filters with a reinforcement learning agent that attends to the most relevant parts of the map. The resulting approach inherits the computational benefits of particle filters and can directly act in continuous action spaces while remaining fully differentiable and thereby end-to-end optimizable as well as agnostic to the input modality. We demonstrate the benefits of our approach with extensive experiments in photorealistic indoor environments built from real-world 3D scanned apartments. Videos and code are available at http://apfn.cs.uni-freiburg.de.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源