论文标题

在mod $ p $ p $ cohomology上

On the mod $p$ cohomology for $\operatorname{GL}_2$

论文作者

Wang, Yitong

论文摘要

让$ p $为质量数字,而$ f $ a在$ p $以上的地方不受影响的完全真实的字段。令$ \ bar {r}:\ operatorName {gal}(\ bar f/f)\ rightArrow \ rightArow \ propatatorName {gl} _2(\ bar {\ mathbb {f} _p} _p} _p})$是一个模块化的galois代表,使泰勒 - 韦尔·韦尔斯(Taylor-Wiles)表示满足泰勒 - 韦尔斯(Taylor-Wiles)的假设和某些技术的假设。对于$ v $,$ f $ $ p $上方的固定位置,我们证明,$ \ perperatorname {gl} _2(f_v)$ a $ \ bar {\ mathbb {f_v)$的许多可接受的流畅表示dimension $ [f_v:\ mathbb {q} _p] $。这是基于Breuil-Herzig-hu-Morra-Schraen和Hu-Wang的工作,并扩展了所有情况下的统一证明($ \ bar {r} $,无论是在$ v $时)。

Let $p$ be a prime number and $F$ a totally real number field unramified at places above $p$. Let $\bar{r}:\operatorname{Gal}(\bar F/F)\rightarrow\operatorname{GL}_2(\bar{\mathbb{F}_p})$ be a modular Galois representation which satisfies the Taylor-Wiles hypothesis and some technical genericity assumptions. For $v$ a fixed place of $F$ above $p$, we prove that many of the admissible smooth representations of $\operatorname{GL}_2(F_v)$ over $\bar{\mathbb{F}_p}$ associated to $\bar{r}$ in the corresponding Hecke-eigenspaces of the mod $p$ cohomology have Gelfand--Kirillov dimension $[F_v:\mathbb{Q}_p]$. This builds on and extends the work of Breuil-Herzig-Hu-Morra-Schraen and Hu-Wang, giving a unified proof in all cases ($\bar{r}$ either semisimple or not at $v$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源