论文标题

从色眼图像中的视网膜动脉和静脉的同时分割和分类

Simultaneous segmentation and classification of the retinal arteries and veins from color fundus images

论文作者

Morano, José, Hervella, Álvaro S., Novo, Jorge, Rouco, José

论文摘要

视网膜脉管系统的研究是筛查和诊断许多疾病的基本阶段。完整的视网膜血管分析需要将视网膜的血管分为动脉和静脉(A/V)。早期自动方法在两个顺序阶段接近这些分割和分类任务。但是,目前,这些任务是作为联合语义分割任务处理的,因为分类结果在很大程度上取决于血管分割的有效性。在这方面,我们提出了一种新的方法,用于从眼睛眼睛图像中对视网膜A/V进行分割和分类。特别是,我们提出了一种新颖的方法,该方法与以前的方法不同,并且由于新颖的损失,将联合任务分解为针对动脉,静脉和整个血管树的三个分割问题。这种配置允许直观地处理容器交叉口,并直接提供不同靶血管树的精确分割口罩。提供的关于公共视网膜图血管提取(RITE)数据集的消融研究表明,所提出的方法提供了令人满意的性能,尤其是在不同结构的分割中。此外,与最新技术的比较表明,我们的方法在A/V分类中获得了高度竞争的结果,同时显着改善了血管分割。提出的多段方法允许检测更多的血管,并更好地分割不同的结构,同时实现竞争性分类性能。同样,用这些术语来说,我们的方法优于各种参考作品的方法。此外,与以前的方法相比,所提出的方法允许直接检测血管交叉,并在这些复杂位置保留A/V的连续性。

The study of the retinal vasculature is a fundamental stage in the screening and diagnosis of many diseases. A complete retinal vascular analysis requires to segment and classify the blood vessels of the retina into arteries and veins (A/V). Early automatic methods approached these segmentation and classification tasks in two sequential stages. However, currently, these tasks are approached as a joint semantic segmentation task, as the classification results highly depend on the effectiveness of the vessel segmentation. In that regard, we propose a novel approach for the simultaneous segmentation and classification of the retinal A/V from eye fundus images. In particular, we propose a novel method that, unlike previous approaches, and thanks to a novel loss, decomposes the joint task into three segmentation problems targeting arteries, veins and the whole vascular tree. This configuration allows to handle vessel crossings intuitively and directly provides accurate segmentation masks of the different target vascular trees. The provided ablation study on the public Retinal Images vessel Tree Extraction (RITE) dataset demonstrates that the proposed method provides a satisfactory performance, particularly in the segmentation of the different structures. Furthermore, the comparison with the state of the art shows that our method achieves highly competitive results in A/V classification, while significantly improving vascular segmentation. The proposed multi-segmentation method allows to detect more vessels and better segment the different structures, while achieving a competitive classification performance. Also, in these terms, our approach outperforms the approaches of various reference works. Moreover, in contrast with previous approaches, the proposed method allows to directly detect the vessel crossings, as well as preserving the continuity of A/V at these complex locations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源