论文标题
重力理论中的紧凑物体
Compact objects in gravity theories
论文作者
论文摘要
我们简要讨论了高阶标量理论中的显式紧凑对象解决方案。我们以所谓的隐形溶液开始,其度量是一般相对论(GR)溶液,但在球形对称和旋转情况下都伴有非平凡的标量场。然后,后者可以构建标量张量理论的分析固定解决方案,该解决方案称为错误的KERR度量。该解决方案构成了与GR的通常的Kerr几何形状相对于通常的差异。最终,我们考虑了一种标量调整的理论,它是由较高维的洛夫洛克理论的kaluza-klein降低的,它使得能够获得非保健黑洞,高度紧凑的中子星和最后的虫洞溶液。
We briefly discuss explicit compact object solutions in higher-order scalar-tensor theories. We start by so-called stealth solutions, whose metric are General Relativity (GR) solutions, but accompanied by a non-trivial scalar field, in both spherically-symmetric and rotating cases. The latter then enables to construct an analytic stationary solution of scalar tensor theory which is called disformed Kerr metric. This solution constitutes a measurable departure from the usual Kerr geometry of GR. We finally consider a scalar-tensor theory stemming from a Kaluza-Klein reduction of a higher-dimensional Lovelock theory, and which enables to obtain non-stealth black holes, highly compact neutron stars and finally wormhole solutions.