论文标题

NBD-GAP:无盲图像无干净的目标图像的脱毛

NBD-GAP: Non-Blind Image Deblurring Without Clean Target Images

论文作者

Nair, Nithin Gopalakrishnan, Yasarla, Rajeev, Patel, Vishal M.

论文摘要

近年来,基于神经网络的深度恢复方法已获得最先进的方法,从而导致了各种图像过度的任务。但是,基于深度学习的Deblurring网络的一个主要缺点是,训练需要大量模糊清洁图像对才能实现良好的性能。此外,当测试过程中的模糊图像和模糊内核与训练过程中使用的图像和模糊内核时,深层网络通常无法表现良好。这主要是因为网络参数在培训数据上过度拟合。在这项工作中,我们提出了一种解决这些问题的方法。我们将非盲图像脱蓝色问题视为一个脱氧问题。为此,我们在一对模糊图像上使用相应的模糊内核进行Wiener过滤。这导致一对具有彩色噪声的图像。因此,造成造成的问题被转化为一个令人难以置信的问题。然后,我们在不使用明确的干净目标图像的情况下解决了denoising问题。进行了广泛的实验,以表明我们的方法取得了与最先进的非盲人脱毛作品相提并论的结果。

In recent years, deep neural network-based restoration methods have achieved state-of-the-art results in various image deblurring tasks. However, one major drawback of deep learning-based deblurring networks is that large amounts of blurry-clean image pairs are required for training to achieve good performance. Moreover, deep networks often fail to perform well when the blurry images and the blur kernels during testing are very different from the ones used during training. This happens mainly because of the overfitting of the network parameters on the training data. In this work, we present a method that addresses these issues. We view the non-blind image deblurring problem as a denoising problem. To do so, we perform Wiener filtering on a pair of blurry images with the corresponding blur kernels. This results in a pair of images with colored noise. Hence, the deblurring problem is translated into a denoising problem. We then solve the denoising problem without using explicit clean target images. Extensive experiments are conducted to show that our method achieves results that are on par to the state-of-the-art non-blind deblurring works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源