论文标题
将因果分析纳入多元化和逻辑响应产生
Incorporating Causal Analysis into Diversified and Logical Response Generation
论文作者
论文摘要
尽管有条件的变异自动编码器(CVAE)模型比传统的SEQ2SEQ模型可以产生更多的多样化响应,但响应通常与输入词的相关性低或与问题不合逻辑。进行因果分析以研究背后的原因,并提供了一种寻找调解人并减轻对话中混杂偏见的方法。具体而言,我们建议预测调解人,以保留相关信息,并自动回归将调解人纳入生成过程中。此外,动态主题图指导条件变分自动编码器(TGG-CVAE)模型可用于补充语义空间并减少响应中的混杂偏见。广泛的实验表明,所提出的模型能够产生相关和信息性的响应,并且在自动指标和人类评估方面优于最先进的响应。
Although the Conditional Variational AutoEncoder (CVAE) model can generate more diversified responses than the traditional Seq2Seq model, the responses often have low relevance with the input words or are illogical with the question. A causal analysis is carried out to study the reasons behind, and a methodology of searching for the mediators and mitigating the confounding bias in dialogues is provided. Specifically, we propose to predict the mediators to preserve relevant information and auto-regressively incorporate the mediators into generating process. Besides, a dynamic topic graph guided conditional variational autoencoder (TGG-CVAE) model is utilized to complement the semantic space and reduce the confounding bias in responses. Extensive experiments demonstrate that the proposed model is able to generate both relevant and informative responses, and outperforms the state-of-the-art in terms of automatic metrics and human evaluations.