论文标题
使用动力学散射模拟从超快电子衍射中对晶格温度动力学的准确定量
Accurate quantification of lattice temperature dynamics from ultrafast electron diffraction of single-crystal films using dynamical scattering simulations
论文作者
论文摘要
在超快电子衍射(UED)实验中,准确检索时间分辨的结构参数(例如原子坐标和热位移参数)需要准确的散射模型。不幸的是,即使对于相对论电子探针,运动学模型也常常不准确,尤其是对于存在强大的通道和多个散射效应的致密,定向的单晶。本文介绍并展示了针对单晶膜进行的UED实验定量分析的动态散射模型。作为案例研究,我们检查了单晶金膜的超快激光加热。运动学模型和动力学模型的比较揭示了NM尺度膜中动态散射的强烈影响及其对样品形象和探针动能的依赖。在使用750 keV电子探针脉冲上,在11 nm厚的膜上应用UED实验,动力学模型比可比的运动模型相匹配,在匹配测量的UED模式方面具有十倍改进。同样,基于先前测量的黄金的光学常数,检索到的晶格温度升高与预测非常吻合,而拟合Debye-Waller因子则检索低三倍以上的值。总的来说,这些结果表明了动态散射理论对UED进行定量分析的重要性,并证明了可以实际应用于单晶材料和异质结构的模型。
In ultrafast electron diffraction (UED) experiments, accurate retrieval of time-resolved structural parameters, such as atomic coordinates and thermal displacement parameters, requires an accurate scattering model. Unfortunately, kinematical models are often inaccurate even for relativistic electron probes, especially for dense, oriented single crystals where strong channeling and multiple scattering effects are present. This article introduces and demonstrates dynamical scattering models tailored for quantitative analysis of UED experiments performed on single-crystal films. As a case study, we examine ultrafast laser heating of single-crystal gold films. Comparison of kinematical and dynamical models reveals the strong effects of dynamical scattering within nm-scale films and their dependence on sample topography and probe kinetic energy. Applying to UED experiments on an 11 nm thick film using 750 keV electron probe pulses, the dynamical models provide a tenfold improvement over a comparable kinematical model in matching the measured UED patterns. Also, the retrieved lattice temperature rise is in very good agreement with predictions based on previously measured optical constants of gold, whereas fitting the Debye-Waller factor retrieves values that are more than three times lower. Altogether, these results show the importance of dynamical scattering theory for quantitative analysis of UED and demonstrate models that can be practically applied to single-crystal materials and heterostructures.