论文标题

MPC具有基于传感器的在线成本改编

MPC with Sensor-Based Online Cost Adaptation

论文作者

Meduri, Avadesh, Zhu, Huaijiang, Jordana, Armand, Righetti, Ludovic

论文摘要

模型预测控制是为机器人生成复杂动作的强大工具。但是,它通常需要在线解决非凸问题以产生丰富的行为,这在计算上很昂贵,并且并非总是实时实用的。此外,通过当前状态空间方法,反馈回路中高维传感器数据(例如RGB-D图像)的直接集成在挑战。本文旨在解决这两个问题。它引入了模型预测控制方案,其中神经网络不断根据感官输入来更新二次程序的成本函数,旨在最大程度地减少一般的非convex任务损失而不解决非convex问题。通过更新成本,机器人可以直接从传感器测量中适应环境的变化,而无需进行新的成本设计。此外,由于可以通过硬限制有效地解决二次​​程序,因此可以确保机器人对机器人的安全部署。在工业机器人操纵器上进行了各种触及任务的实验表明,我们的方法可以有效地解决具有高维视觉感觉输入的复杂的非凸问题,同时仍然对外部干扰保持稳健。

Model predictive control is a powerful tool to generate complex motions for robots. However, it often requires solving non-convex problems online to produce rich behaviors, which is computationally expensive and not always practical in real time. Additionally, direct integration of high dimensional sensor data (e.g. RGB-D images) in the feedback loop is challenging with current state-space methods. This paper aims to address both issues. It introduces a model predictive control scheme, where a neural network constantly updates the cost function of a quadratic program based on sensory inputs, aiming to minimize a general non-convex task loss without solving a non-convex problem online. By updating the cost, the robot is able to adapt to changes in the environment directly from sensor measurement without requiring a new cost design. Furthermore, since the quadratic program can be solved efficiently with hard constraints, a safe deployment on the robot is ensured. Experiments with a wide variety of reaching tasks on an industrial robot manipulator demonstrate that our method can efficiently solve complex non-convex problems with high-dimensional visual sensory inputs, while still being robust to external disturbances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源