论文标题
时空增强网络,用于基于位置的服务的点击率预测
Spatiotemporal-Enhanced Network for Click-Through Rate Prediction in Location-based Services
论文作者
论文摘要
在基于位置的服务(LB)中,用户行为自然对时空信息(即在不同地理位置的位置,在不同的时间,用户点击行为都会发生显着变化。用户点击行为和大规模稀疏属性的适当时空增强建模是构建LBS型号的关键。尽管事实证明大多数现有方法是有效的,但由于时空信息的建模不足,它们很难应用于外卖情况。在本文中,我们通过寻求明确建模相互作用的时机和位置并提出时空增强网络(即Sten)来应对这一挑战。特别是,Sten应用了时空轮廓激活模块,通过属性特征捕获常见的时空偏好。时空偏好激活进一步应用于模拟由行为详细体现的个性化时空偏好。此外,采用了时空感知的目标注意机制来产生不同的参数,以在不同的位置和时间在不同的位置和时间进行目标注意力,从而提高了模型的个性化时空意识。此外,我们还发布了一个用于外卖行业的工业数据集,以弥补该社区缺乏公共数据集。
In Location-Based Services(LBS), user behavior naturally has a strong dependence on the spatiotemporal information, i.e., in different geographical locations and at different times, user click behavior will change significantly. Appropriate spatiotemporal enhancement modeling of user click behavior and large-scale sparse attributes is key to building an LBS model. Although most of existing methods have been proved to be effective, they are difficult to apply to takeaway scenarios due to insufficient modeling of spatiotemporal information. In this paper, we address this challenge by seeking to explicitly model the timing and locations of interactions and proposing a Spatiotemporal-Enhanced Network, namely StEN. In particular, StEN applies a Spatiotemporal Profile Activation module to capture common spatiotemporal preference through attribute features. A Spatiotemporal Preference Activation is further applied to model the personalized spatiotemporal preference embodied by behaviors in detail. Moreover, a Spatiotemporal-aware Target Attention mechanism is adopted to generate different parameters for target attention at different locations and times, thereby improving the personalized spatiotemporal awareness of the model.Comprehensive experiments are conducted on three large-scale industrial datasets, and the results demonstrate the state-of-the-art performance of our methods. In addition, we have also released an industrial dataset for takeaway industry to make up for the lack of public datasets in this community.