论文标题
边缘的深度学习可以实时流媒体术成像
Deep learning at the edge enables real-time streaming ptychographic imaging
论文作者
论文摘要
一致的显微镜技术提供了跨科学和技术领域的材料的无与伦比的多尺度视图,从结构材料到量子设备,从综合电路到生物细胞。在构造更明亮的来源和高速探测器的驱动下,相干X射线显微镜方法(如Ptychography)有望彻底改变纳米级材料的特征。但是,相关的数据和计算需求的显着增加意味着,常规方法不再足以从高速相干成像实验实时恢复样品图像。在这里,我们演示了一个工作流,该工作流利用边缘的人工智能和高性能计算,以实现直接从检测器以2 kHz的检测器流传输的X射线ptychography数据实时反演。拟议的AI支持的工作流程消除了传统的Ptychography施加的采样限制,从而使用比传统方法所需的数量级少的量级量允许低剂量成像。
Coherent microscopy techniques provide an unparalleled multi-scale view of materials across scientific and technological fields, from structural materials to quantum devices, from integrated circuits to biological cells. Driven by the construction of brighter sources and high-rate detectors, coherent X-ray microscopy methods like ptychography are poised to revolutionize nanoscale materials characterization. However, associated significant increases in data and compute needs mean that conventional approaches no longer suffice for recovering sample images in real-time from high-speed coherent imaging experiments. Here, we demonstrate a workflow that leverages artificial intelligence at the edge and high-performance computing to enable real-time inversion on X-ray ptychography data streamed directly from a detector at up to 2 kHz. The proposed AI-enabled workflow eliminates the sampling constraints imposed by traditional ptychography, allowing low dose imaging using orders of magnitude less data than required by traditional methods.