论文标题
ind-étalevs正式典型
Ind-étale vs Formally étale
论文作者
论文摘要
我们表明,当$ a $是特征零字段$ k $的代数减少时,kählerDindicals$ω__{a/k} = 0 $的模块,则$ a $是ind-étale,部分地回答了Bhatt的问题。作为此结果的进一步应用,我们推断出Hochschild同源性的刚性属性以及Weibel的猜想和Vorst的猜想的特殊实例,而没有任何noetherian假设。
We show that when $A$ is a reduced algebra over a characteristic zero field $k$ and the module of Kähler differentials $Ω_{A/k}=0$, then $A$ is ind-étale, partially answering a question of Bhatt. As further applications of this result, we deduce a rigidity property of Hochschild homology and special instances of Weibel's conjecture and Vorst's conjecture without any noetherian assumptions.