论文标题
一个简单而强大的全局优化,用于无监督的视频对象细分
A Simple and Powerful Global Optimization for Unsupervised Video Object Segmentation
论文作者
论文摘要
我们为视频中的无监督对象细分提出了一种简单而强大的方法。我们引入了一个目标函数,其最小值代表输入序列上主要显着对象的掩码。它仅依赖于独立的图像特征和光流,可以使用现成的自我监督方法获得。它以序列的长度缩放,不需要超级像素或稀疏,并且在没有任何特定培训的情况下将其推广到不同的数据集。该目标函数实际上可以从应用于整个视频的光谱群集形式得出。我们的方法在标准基准(Davis2016,Segtrack-V2,FBMS59)上以最先进的状态实现了PAR的性能,同时在概念上且实际上更简单。代码可在https://ponimatkin.github.io/ssl-vos上找到。
We propose a simple, yet powerful approach for unsupervised object segmentation in videos. We introduce an objective function whose minimum represents the mask of the main salient object over the input sequence. It only relies on independent image features and optical flows, which can be obtained using off-the-shelf self-supervised methods. It scales with the length of the sequence with no need for superpixels or sparsification, and it generalizes to different datasets without any specific training. This objective function can actually be derived from a form of spectral clustering applied to the entire video. Our method achieves on-par performance with the state of the art on standard benchmarks (DAVIS2016, SegTrack-v2, FBMS59), while being conceptually and practically much simpler. Code is available at https://ponimatkin.github.io/ssl-vos.