论文标题
喷射和动荡的恒星死亡:新的LVK可检测引力波源
Jetted and Turbulent Stellar Deaths: New LVK-Detectable Gravitational Wave Sources
论文作者
论文摘要
即将到来的Ligo/处女座/Kagra(LVK)观察跑步有望检测到来自黑洞和中子星二进制合并的各种灵感引力波(GW)事件。还可以检测非刺激性GW来源。我们报告了一类新的非刺激性GW源的发现 - 大量恒星的终端状态 - 可以在已知的LVK频段中产生最亮的模拟随机GW爆发信号,并且可以在LVK中可检测到A+。一些垂死的巨星发射了双极相对论的喷气机,该射流使恒星内部的湍流充满活气泡-Cocoon-膨胀。我们使用最先进的3D通用磁性流体动力学模拟模拟了这样的系统,并表明这些茧在LVK频段中发出了Quasi Esotropic GW发射,$ \ sim 10-100 $ Hz,在一个特征性的喷气活动时间表上,$ \ sim 10-100 $。我们的第一原理模拟表明,喷气机表现出摇摆的行为,在这种情况下,可能已经在LVK运行A+中已经检测到以茧为动力的GWS,但是第三代GW检测器的可能检测到这些GWS的估计率为$ \ sim 10 $ 10 $。如果所有喷气机都具有传统的轴对称结构而不是摇摆,则检测率降至该值的$ \ sim 1 \%$。伴随着来自能量的核心 - 循环超新星和茧的电磁发射,我们预测Collapsars是强大的多通讯事件。
Upcoming LIGO/Virgo/KAGRA (LVK) observing runs are expected to detect a variety of inspiralling gravitational-wave (GW) events, that come from black-hole and neutron-star binary mergers. Detection of non-inspiral GW sources is also anticipated. We report the discovery of a new class of non-inspiral GW sources - the end states of massive stars - that can produce the brightest simulated stochastic GW burst signal in LVK bands known to date, and could be detectable in the LVK run A+. Some dying massive stars launch bipolar relativistic jets, which inflate a turbulent energetic bubble - cocoon - inside of the star. We simulate such a system using state-of-the-art 3D general-relativistic magnetohydrodynamic simulations and show that these cocoons emit quasi-isotropic GW emission in the LVK band, $\sim 10-100$ Hz, over a characteristic jet activity timescale, $\sim 10-100$ s. Our first-principles simulations show that jets exhibit a wobbling behavior, in which case cocoon-powered GWs might be detected already in LVK run A+, but it is more likely that these GWs will be detected by the third generation GW detectors with estimated rate of $ \sim 10 $ events/year. The detection rate drops to $ \sim 1\% $ of that value if all jets were to feature a traditional axisymmetric structure instead of a wobble. Accompanied by electromagnetic emission from the energetic core-collapse supernova and the cocoon, we predict that collapsars are powerful multi-messenger events.