论文标题

尖锐的边界痕量理论和界限域上的schrödinger操作员

Sharp Boundary Trace Theory and Schrödinger Operators on Bounded Lipschitz Domains

论文作者

Behrndt, Jussi, Gesztesy, Fritz, Mitrea, Marius

论文摘要

我们在任意有限的Lipschitz域中开发了尖锐的边界痕量理论,与经典结果相比,它允许“禁止”终点,并允许考虑表现出非常有限的规律性的功能。这是按照(必要的)费用来规定额外的规律性条件的(涉及拉普拉斯人对所讨论功能的作用的)费用,尽管如此,该函数与Schrödinger差异表达式$-Δ+v $的DIRICHLET和NEUMANN实现完全合作。反过来,这种边界痕迹理论是为有限的Lipschitz域上的Schrödinger运营商开发光谱理论的平台,以及它们相关的Weyl-Titchmarsh操作员。总体而言,这将当前的知识状态进一步迈进了一步。例如,我们成功地扩展了Dirichlet和Neumann Trace运算符,以使Schrödinger操作员在有限的Lipschitz域上的所有自我参与扩展可以通过明确的边界条件来描述,从而为在数学文献中已有60多年的问题提供了最终答案。一路上,解决了许多其他开放问题。此处开发的理论最通用的几何和分析环境令人满意的结果是Riemannian歧管的Lipschitz子域以及相应的Laplace-Beltrami操作员(代替标准的平面laplacian)。特别是,这种扩展为有限的Lipschitz域上的可变系数Schrödinger运算符得出的结果。

We develop a sharp boundary trace theory in arbitrary bounded Lipschitz domains which, in contrast to classical results, allows "forbidden" endpoints and permits the consideration of functions exhibiting very limited regularity. This is done at the (necessary) expense of stipulating an additional regularity condition involving the action of the Laplacian on the functions in question which, nonetheless, works perfectly with the Dirichlet and Neumann realizations of the Schrödinger differential expression $-Δ+V$. In turn, this boundary trace theory serves as a platform for developing a spectral theory for Schrödinger operators on bounded Lipschitz domains, along with their associated Weyl-Titchmarsh operators. Overall, this pushes the present state of knowledge a significant step further. For example, we succeed in extending the Dirichlet and Neumann trace operators in such a way that all self-adjoint extensions of a Schrödinger operator on a bounded Lipschitz domain may be described with explicit boundary conditions, thus providing a final answer to a problem that has been investigated for more than 60 years in the mathematical literature. Along the way, a number of other open problems are solved. The most general geometric and analytic setting in which the theory developed here yields satisfactory results is that of Lipschitz subdomains of Riemannian manifolds and for the corresponding Laplace-Beltrami operator (in place of the standard flat-space Laplacian). In particular, such an extension yields results for variable coefficient Schrödinger operators on bounded Lipschitz domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源