论文标题

使用分类器作为生成器

Use Classifier as Generator

论文作者

Li, Haoyang

论文摘要

图像识别/分类是一个广泛研究的问题,但其相反的问题(图像产生)直到最近引起的关注程度要少得多。但是,最新的图像生成方法中的绝大多数方法都需要培训/重新培训分类器和/或具有某些约束的生成器,这可能很难实现。在本文中,我们提出了一种简单的方法,可以直接使用经过正常训练的分类器来生成图像。我们评估了我们的MNIST方法,并表明它可以通过实验质量有限的人眼产生可识别的结果。

Image recognition/classification is a widely studied problem, but its reverse problem, image generation, has drawn much less attention until recently. But the vast majority of current methods for image generation require training/retraining a classifier and/or a generator with certain constraints, which can be hard to achieve. In this paper, we propose a simple approach to directly use a normally trained classifier to generate images. We evaluate our method on MNIST and show that it produces recognizable results for human eyes with limited quality with experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源